# include "Copter.h"
# if MODE_POSHOLD_ENABLED == ENABLED
/*
* Init and run calls for PosHold flight mode
* PosHold tries to improve upon regular loiter by mixing the pilot input with the loiter controller
*/
# define POSHOLD_SPEED_0 10 // speed below which it is always safe to switch to loiter
// 400hz loop update rate
# define POSHOLD_BRAKE_TIME_ESTIMATE_MAX (600*4) // max number of cycles the brake will be applied before we switch to loiter
# define POSHOLD_BRAKE_TO_LOITER_TIMER (150*4) // Number of cycles to transition from brake mode to loiter mode. Must be lower than POSHOLD_LOITER_STAB_TIMER
# define POSHOLD_WIND_COMP_START_TIMER (150*4) // Number of cycles to start wind compensation update after loiter is engaged
# define POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER (50*4) // Set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition.
# define POSHOLD_SMOOTH_RATE_FACTOR 0.0125f // filter applied to pilot's roll/pitch input as it returns to center. A lower number will cause the roll/pitch to return to zero more slowly if the brake_rate is also low.
# define POSHOLD_WIND_COMP_TIMER_10HZ 40 // counter value used to reduce wind compensation to 10hz
# define LOOP_RATE_FACTOR 4 // used to adapt PosHold params to loop_rate
# define TC_WIND_COMP 0.0025f // Time constant for poshold_update_wind_comp_estimate()
// definitions that are independent of main loop rate
# define POSHOLD_STICK_RELEASE_SMOOTH_ANGLE 1800 // max angle required (in centi-degrees) after which the smooth stick release effect is applied
# define POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX 10 // wind compensation estimates will only run when velocity is at or below this speed in cm/s
// poshold_init - initialise PosHold controller
bool ModePosHold : : init ( bool ignore_checks )
{
// initialize vertical speeds and acceleration
pos_control - > set_max_speed_z ( - get_pilot_speed_dn ( ) , g . pilot_speed_up ) ;
pos_control - > set_max_accel_z ( g . pilot_accel_z ) ;
// initialise position and desired velocity
if ( ! pos_control - > is_active_z ( ) ) {
pos_control - > set_alt_target_to_current_alt ( ) ;
pos_control - > set_desired_velocity_z ( inertial_nav . get_velocity_z ( ) ) ;
}
// initialise lean angles to current attitude
pilot_roll = 0.0f ;
pilot_pitch = 0.0f ;
// compute brake_gain
brake_gain = ( 15.0f * ( float ) g . poshold_brake_rate + 95.0f ) / 100.0f ;
if ( copter . ap . land_complete ) {
// if landed begin in loiter mode
roll_mode = RPMode : : LOITER ;
pitch_mode = RPMode : : LOITER ;
} else {
// if not landed start in pilot override to avoid hard twitch
roll_mode = RPMode : : PILOT_OVERRIDE ;
pitch_mode = RPMode : : PILOT_OVERRIDE ;
}
// initialise loiter
loiter_nav - > clear_pilot_desired_acceleration ( ) ;
loiter_nav - > init_target ( ) ;
// initialise wind_comp each time PosHold is switched on
wind_comp_ef . zero ( ) ;
wind_comp_timer = 0 ;
wind_comp_roll = 0.0f ;
wind_comp_pitch = 0.0f ;
return true ;
}
// poshold_run - runs the PosHold controller
// should be called at 100hz or more
void ModePosHold : : run ( )
{
float takeoff_climb_rate = 0.0f ;
float brake_to_loiter_mix ; // mix of brake and loiter controls. 0 = fully brake controls, 1 = fully loiter controls
float controller_to_pilot_roll_mix ; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls
float controller_to_pilot_pitch_mix ; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls
const Vector3f & vel = inertial_nav . get_velocity ( ) ;
// initialize vertical speeds and acceleration
pos_control - > set_max_speed_z ( - get_pilot_speed_dn ( ) , g . pilot_speed_up ) ;
pos_control - > set_max_accel_z ( g . pilot_accel_z ) ;
loiter_nav - > clear_pilot_desired_acceleration ( ) ;
// apply SIMPLE mode transform to pilot inputs
update_simple_mode ( ) ;
// convert pilot input to lean angles
float target_roll , target_pitch ;
get_pilot_desired_lean_angles ( target_roll , target_pitch , copter . aparm . angle_max , attitude_control - > get_althold_lean_angle_max ( ) ) ;
// get pilot's desired yaw rate
float target_yaw_rate = get_pilot_desired_yaw_rate ( channel_yaw - > get_control_in ( ) ) ;
// get pilot desired climb rate (for alt-hold mode and take-off)
float target_climb_rate = get_pilot_desired_climb_rate ( channel_throttle - > get_control_in ( ) ) ;
target_climb_rate = constrain_float ( target_climb_rate , - get_pilot_speed_dn ( ) , g . pilot_speed_up ) ;
// relax loiter target if we might be landed
if ( copter . ap . land_complete_maybe ) {
loiter_nav - > soften_for_landing ( ) ;
}
// Pos Hold State Machine Determination
AltHoldModeState poshold_state = get_alt_hold_state ( target_climb_rate ) ;
// state machine
switch ( poshold_state ) {
case AltHold_MotorStopped :
attitude_control - > reset_rate_controller_I_terms ( ) ;
attitude_control - > set_yaw_target_to_current_heading ( ) ;
pos_control - > relax_alt_hold_controllers ( 0.0f ) ; // forces throttle output to go to zero
loiter_nav - > clear_pilot_desired_acceleration ( ) ;
loiter_nav - > init_target ( ) ;
loiter_nav - > update ( ) ;
// set poshold state to pilot override
roll_mode = RPMode : : PILOT_OVERRIDE ;
pitch_mode = RPMode : : PILOT_OVERRIDE ;
break ;
case AltHold_Takeoff :
// initiate take-off
if ( ! takeoff . running ( ) ) {
takeoff . start ( constrain_float ( g . pilot_takeoff_alt , 0.0f , 1000.0f ) ) ;
}
// get take-off adjusted pilot and takeoff climb rates
takeoff . get_climb_rates ( target_climb_rate , takeoff_climb_rate ) ;
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate ( target_climb_rate ) ;
// init and update loiter although pilot is controlling lean angles
loiter_nav - > clear_pilot_desired_acceleration ( ) ;
loiter_nav - > init_target ( ) ;
loiter_nav - > update ( ) ;
// set position controller targets
pos_control - > set_alt_target_from_climb_rate_ff ( target_climb_rate , G_Dt , false ) ;
pos_control - > add_takeoff_climb_rate ( takeoff_climb_rate , G_Dt ) ;
// set poshold state to pilot override
roll_mode = RPMode : : PILOT_OVERRIDE ;
pitch_mode = RPMode : : PILOT_OVERRIDE ;
break ;
case AltHold_Landed_Ground_Idle :
loiter_nav - > clear_pilot_desired_acceleration ( ) ;
loiter_nav - > init_target ( ) ;
loiter_nav - > update ( ) ;
attitude_control - > set_yaw_target_to_current_heading ( ) ;
FALLTHROUGH ;
case AltHold_Landed_Pre_Takeoff :
attitude_control - > reset_rate_controller_I_terms ( ) ;
pos_control - > relax_alt_hold_controllers ( 0.0f ) ; // forces throttle output to go to zero
// set poshold state to pilot override
roll_mode = RPMode : : PILOT_OVERRIDE ;
pitch_mode = RPMode : : PILOT_OVERRIDE ;
break ;
case AltHold_Flying :
motors - > set_desired_spool_state ( AP_Motors : : DesiredSpoolState : : THROTTLE_UNLIMITED ) ;
# if AC_AVOID_ENABLED == ENABLED
// apply avoidance
copter . avoid . adjust_roll_pitch ( target_roll , target_pitch , copter . aparm . angle_max ) ;
# endif
// adjust climb rate using rangefinder
if ( copter . rangefinder_alt_ok ( ) ) {
// if rangefinder is ok, use surface tracking
target_climb_rate = copter . surface_tracking . adjust_climb_rate ( target_climb_rate ) ;
}
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate ( target_climb_rate ) ;
pos_control - > set_alt_target_from_climb_rate_ff ( target_climb_rate , G_Dt , false ) ;
break ;
}
// poshold specific behaviour to calculate desired roll, pitch angles
// convert inertial nav earth-frame velocities to body-frame
// To-Do: move this to AP_Math (or perhaps we already have a function to do this)
float vel_fw = vel . x * ahrs . cos_yaw ( ) + vel . y * ahrs . sin_yaw ( ) ;
float vel_right = - vel . x * ahrs . sin_yaw ( ) + vel . y * ahrs . cos_yaw ( ) ;
// If not in LOITER, retrieve latest wind compensation lean angles related to current yaw
if ( roll_mode ! = RPMode : : LOITER | | pitch_mode ! = RPMode : : LOITER ) {
get_wind_comp_lean_angles ( wind_comp_roll , wind_comp_pitch ) ;
}
// Roll state machine
// Each state (aka mode) is responsible for:
// 1. dealing with pilot input
// 2. calculating the final roll output to the attitude controller
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
switch ( roll_mode ) {
case RPMode : : PILOT_OVERRIDE :
// update pilot desired roll angle using latest radio input
// this filters the input so that it returns to zero no faster than the brake-rate
update_pilot_lean_angle ( pilot_roll , target_roll ) ;
// switch to BRAKE mode for next iteration if no pilot input
if ( is_zero ( target_roll ) & & ( fabsf ( pilot_roll ) < 2 * g . poshold_brake_rate ) ) {
// initialise BRAKE mode
roll_mode = RPMode : : BRAKE ; // Set brake roll mode
brake_roll = 0.0f ; // initialise braking angle to zero
brake_angle_max_roll = 0.0f ; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
brake_timeout_roll = POSHOLD_BRAKE_TIME_ESTIMATE_MAX ; // number of cycles the brake will be applied, updated during braking mode.
braking_time_updated_roll = false ; // flag the braking time can be re-estimated
}
// final lean angle should be pilot input plus wind compensation
roll = pilot_roll + wind_comp_roll ;
break ;
case RPMode : : BRAKE :
case RPMode : : BRAKE_READY_TO_LOITER :
// calculate brake_roll angle to counter-act velocity
update_brake_angle_from_velocity ( brake_roll , vel_right ) ;
// update braking time estimate
if ( ! braking_time_updated_roll ) {
// check if brake angle is increasing
if ( fabsf ( brake_roll ) > = brake_angle_max_roll ) {
brake_angle_max_roll = fabsf ( brake_roll ) ;
} else {
// braking angle has started decreasing so re-estimate braking time
brake_timeout_roll = 1 + ( uint16_t ) ( LOOP_RATE_FACTOR * 15L * ( int32_t ) ( fabsf ( brake_roll ) ) / ( 10L * ( int32_t ) g . poshold_brake_rate ) ) ; // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
braking_time_updated_roll = true ;
}
}
// if velocity is very low reduce braking time to 0.5seconds
if ( ( fabsf ( vel_right ) < = POSHOLD_SPEED_0 ) & & ( brake_timeout_roll > 50 * LOOP_RATE_FACTOR ) ) {
brake_timeout_roll = 50 * LOOP_RATE_FACTOR ;
}
// reduce braking timer
if ( brake_timeout_roll > 0 ) {
brake_timeout_roll - - ;
} else {
// indicate that we are ready to move to Loiter.
// Loiter will only actually be engaged once both roll_mode and pitch_mode are changed to RPMode::BRAKE_READY_TO_LOITER
// logic for engaging loiter is handled below the roll and pitch mode switch statements
roll_mode = RPMode : : BRAKE_READY_TO_LOITER ;
}
// final lean angle is braking angle + wind compensation angle
roll = brake_roll + wind_comp_roll ;
// check for pilot input
if ( ! is_zero ( target_roll ) ) {
// init transition to pilot override
roll_controller_to_pilot_override ( ) ;
}
break ;
case RPMode : : BRAKE_TO_LOITER :
case RPMode : : LOITER :
// these modes are combined roll-pitch modes and are handled below
break ;
case RPMode : : CONTROLLER_TO_PILOT_OVERRIDE :
// update pilot desired roll angle using latest radio input
// this filters the input so that it returns to zero no faster than the brake-rate
update_pilot_lean_angle ( pilot_roll , target_roll ) ;
// count-down loiter to pilot timer
if ( controller_to_pilot_timer_roll > 0 ) {
controller_to_pilot_timer_roll - - ;
} else {
// when timer runs out switch to full pilot override for next iteration
roll_mode = RPMode : : PILOT_OVERRIDE ;
}
// calculate controller_to_pilot mix ratio
controller_to_pilot_roll_mix = ( float ) controller_to_pilot_timer_roll / ( float ) POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER ;
// mix final loiter lean angle and pilot desired lean angles
roll = mix_controls ( controller_to_pilot_roll_mix , controller_final_roll , pilot_roll + wind_comp_roll ) ;
break ;
}
// Pitch state machine
// Each state (aka mode) is responsible for:
// 1. dealing with pilot input
// 2. calculating the final pitch output to the attitude contpitcher
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
switch ( pitch_mode ) {
case RPMode : : PILOT_OVERRIDE :
// update pilot desired pitch angle using latest radio input
// this filters the input so that it returns to zero no faster than the brake-rate
update_pilot_lean_angle ( pilot_pitch , target_pitch ) ;
// switch to BRAKE mode for next iteration if no pilot input
if ( is_zero ( target_pitch ) & & ( fabsf ( pilot_pitch ) < 2 * g . poshold_brake_rate ) ) {
// initialise BRAKE mode
pitch_mode = RPMode : : BRAKE ; // set brake pitch mode
brake_pitch = 0.0f ; // initialise braking angle to zero
brake_angle_max_pitch = 0.0f ; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
brake_timeout_pitch = POSHOLD_BRAKE_TIME_ESTIMATE_MAX ; // number of cycles the brake will be applied, updated during braking mode.
braking_time_updated_pitch = false ; // flag the braking time can be re-estimated
}
// final lean angle should be pilot input plus wind compensation
pitch = pilot_pitch + wind_comp_pitch ;
break ;
case RPMode : : BRAKE :
case RPMode : : BRAKE_READY_TO_LOITER :
// calculate brake_pitch angle to counter-act velocity
update_brake_angle_from_velocity ( brake_pitch , - vel_fw ) ;
// update braking time estimate
if ( ! braking_time_updated_pitch ) {
// check if brake angle is increasing
if ( fabsf ( brake_pitch ) > = brake_angle_max_pitch ) {
brake_angle_max_pitch = fabsf ( brake_pitch ) ;
} else {
// braking angle has started decreasing so re-estimate braking time
brake_timeout_pitch = 1 + ( uint16_t ) ( LOOP_RATE_FACTOR * 15L * ( int32_t ) ( fabsf ( brake_pitch ) ) / ( 10L * ( int32_t ) g . poshold_brake_rate ) ) ; // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
braking_time_updated_pitch = true ;
}
}
// if velocity is very low reduce braking time to 0.5seconds
if ( ( fabsf ( vel_fw ) < = POSHOLD_SPEED_0 ) & & ( brake_timeout_pitch > 50 * LOOP_RATE_FACTOR ) ) {
brake_timeout_pitch = 50 * LOOP_RATE_FACTOR ;
}
// reduce braking timer
if ( brake_timeout_pitch > 0 ) {
brake_timeout_pitch - - ;
} else {
// indicate that we are ready to move to Loiter.
// Loiter will only actually be engaged once both pitch_mode and pitch_mode are changed to RPMode::BRAKE_READY_TO_LOITER
// logic for engaging loiter is handled below the pitch and pitch mode switch statements
pitch_mode = RPMode : : BRAKE_READY_TO_LOITER ;
}
// final lean angle is braking angle + wind compensation angle
pitch = brake_pitch + wind_comp_pitch ;
// check for pilot input
if ( ! is_zero ( target_pitch ) ) {
// init transition to pilot override
pitch_controller_to_pilot_override ( ) ;
}
break ;
case RPMode : : BRAKE_TO_LOITER :
case RPMode : : LOITER :
// these modes are combined pitch-pitch modes and are handled below
break ;
case RPMode : : CONTROLLER_TO_PILOT_OVERRIDE :
// update pilot desired pitch angle using latest radio input
// this filters the input so that it returns to zero no faster than the brake-rate
update_pilot_lean_angle ( pilot_pitch , target_pitch ) ;
// count-down loiter to pilot timer
if ( controller_to_pilot_timer_pitch > 0 ) {
controller_to_pilot_timer_pitch - - ;
} else {
// when timer runs out switch to full pilot override for next iteration
pitch_mode = RPMode : : PILOT_OVERRIDE ;
}
// calculate controller_to_pilot mix ratio
controller_to_pilot_pitch_mix = ( float ) controller_to_pilot_timer_pitch / ( float ) POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER ;
// mix final loiter lean angle and pilot desired lean angles
pitch = mix_controls ( controller_to_pilot_pitch_mix , controller_final_pitch , pilot_pitch + wind_comp_pitch ) ;
break ;
}
//
// Shared roll & pitch states (RPMode::BRAKE_TO_LOITER and RPMode::LOITER)
//
// switch into LOITER mode when both roll and pitch are ready
if ( roll_mode = = RPMode : : BRAKE_READY_TO_LOITER & & pitch_mode = = RPMode : : BRAKE_READY_TO_LOITER ) {
roll_mode = RPMode : : BRAKE_TO_LOITER ;
pitch_mode = RPMode : : BRAKE_TO_LOITER ;
brake_to_loiter_timer = POSHOLD_BRAKE_TO_LOITER_TIMER ;
// init loiter controller
loiter_nav - > init_target ( inertial_nav . get_position ( ) ) ;
// set delay to start of wind compensation estimate updates
wind_comp_start_timer = POSHOLD_WIND_COMP_START_TIMER ;
}
// roll-mode is used as the combined roll+pitch mode when in BRAKE_TO_LOITER or LOITER modes
if ( roll_mode = = RPMode : : BRAKE_TO_LOITER | | roll_mode = = RPMode : : LOITER ) {
// force pitch mode to be same as roll_mode just to keep it consistent (it's not actually used in these states)
pitch_mode = roll_mode ;
// handle combined roll+pitch mode
switch ( roll_mode ) {
case RPMode : : BRAKE_TO_LOITER :
// reduce brake_to_loiter timer
if ( brake_to_loiter_timer > 0 ) {
brake_to_loiter_timer - - ;
} else {
// progress to full loiter on next iteration
roll_mode = RPMode : : LOITER ;
pitch_mode = RPMode : : LOITER ;
}
// calculate percentage mix of loiter and brake control
brake_to_loiter_mix = ( float ) brake_to_loiter_timer / ( float ) POSHOLD_BRAKE_TO_LOITER_TIMER ;
// calculate brake_roll and pitch angles to counter-act velocity
update_brake_angle_from_velocity ( brake_roll , vel_right ) ;
update_brake_angle_from_velocity ( brake_pitch , - vel_fw ) ;
// run loiter controller
loiter_nav - > update ( ) ;
// calculate final roll and pitch output by mixing loiter and brake controls
roll = mix_controls ( brake_to_loiter_mix , brake_roll + wind_comp_roll , loiter_nav - > get_roll ( ) ) ;
pitch = mix_controls ( brake_to_loiter_mix , brake_pitch + wind_comp_pitch , loiter_nav - > get_pitch ( ) ) ;
// check for pilot input
if ( ! is_zero ( target_roll ) | | ! is_zero ( target_pitch ) ) {
// if roll input switch to pilot override for roll
if ( ! is_zero ( target_roll ) ) {
// init transition to pilot override
roll_controller_to_pilot_override ( ) ;
// switch pitch-mode to brake (but ready to go back to loiter anytime)
// no need to reset brake_pitch here as wind comp has not been updated since last brake_pitch computation
pitch_mode = RPMode : : BRAKE_READY_TO_LOITER ;
}
// if pitch input switch to pilot override for pitch
if ( ! is_zero ( target_pitch ) ) {
// init transition to pilot override
pitch_controller_to_pilot_override ( ) ;
if ( is_zero ( target_roll ) ) {
// switch roll-mode to brake (but ready to go back to loiter anytime)
// no need to reset brake_roll here as wind comp has not been updated since last brake_roll computation
roll_mode = RPMode : : BRAKE_READY_TO_LOITER ;
}
}
}
break ;
case RPMode : : LOITER :
// run loiter controller
loiter_nav - > update ( ) ;
// set roll angle based on loiter controller outputs
roll = loiter_nav - > get_roll ( ) ;
pitch = loiter_nav - > get_pitch ( ) ;
// update wind compensation estimate
update_wind_comp_estimate ( ) ;
// check for pilot input
if ( ! is_zero ( target_roll ) | | ! is_zero ( target_pitch ) ) {
// if roll input switch to pilot override for roll
if ( ! is_zero ( target_roll ) ) {
// init transition to pilot override
roll_controller_to_pilot_override ( ) ;
// switch pitch-mode to brake (but ready to go back to loiter anytime)
pitch_mode = RPMode : : BRAKE_READY_TO_LOITER ;
// reset brake_pitch because wind_comp is now different and should give the compensation of the whole previous loiter angle
brake_pitch = 0.0f ;
}
// if pitch input switch to pilot override for pitch
if ( ! is_zero ( target_pitch ) ) {
// init transition to pilot override
pitch_controller_to_pilot_override ( ) ;
// if roll not overriden switch roll-mode to brake (but be ready to go back to loiter any time)
if ( is_zero ( target_roll ) ) {
roll_mode = RPMode : : BRAKE_READY_TO_LOITER ;
brake_roll = 0.0f ;
}
// if roll not overridden switch roll-mode to brake (but be ready to go back to loiter any time)
}
}
break ;
default :
// do nothing for uncombined roll and pitch modes
break ;
}
}
// constrain target pitch/roll angles
float angle_max = copter . aparm . angle_max ;
roll = constrain_float ( roll , - angle_max , angle_max ) ;
pitch = constrain_float ( pitch , - angle_max , angle_max ) ;
// call attitude controller
attitude_control - > input_euler_angle_roll_pitch_euler_rate_yaw ( roll , pitch , target_yaw_rate ) ;
// call z-axis position controller
pos_control - > update_z_controller ( ) ;
}
// poshold_update_pilot_lean_angle - update the pilot's filtered lean angle with the latest raw input received
void ModePosHold : : update_pilot_lean_angle ( float & lean_angle_filtered , float & lean_angle_raw )
{
// if raw input is large or reversing the vehicle's lean angle immediately set the fitlered angle to the new raw angle
if ( ( lean_angle_filtered > 0 & & lean_angle_raw < 0 ) | | ( lean_angle_filtered < 0 & & lean_angle_raw > 0 ) | | ( fabsf ( lean_angle_raw ) > POSHOLD_STICK_RELEASE_SMOOTH_ANGLE ) ) {
lean_angle_filtered = lean_angle_raw ;
} else {
// lean_angle_raw must be pulling lean_angle_filtered towards zero, smooth the decrease
if ( lean_angle_filtered > 0 ) {
// reduce the filtered lean angle at 5% or the brake rate (whichever is faster).
lean_angle_filtered - = MAX ( ( float ) lean_angle_filtered * POSHOLD_SMOOTH_RATE_FACTOR , MAX ( 1 , g . poshold_brake_rate / LOOP_RATE_FACTOR ) ) ;
// do not let the filtered angle fall below the pilot's input lean angle.
// the above line pulls the filtered angle down and the below line acts as a catch
lean_angle_filtered = MAX ( lean_angle_filtered , lean_angle_raw ) ;
} else {
lean_angle_filtered + = MAX ( - ( float ) lean_angle_filtered * POSHOLD_SMOOTH_RATE_FACTOR , MAX ( 1 , g . poshold_brake_rate / LOOP_RATE_FACTOR ) ) ;
lean_angle_filtered = MIN ( lean_angle_filtered , lean_angle_raw ) ;
}
}
}
// mix_controls - mixes two controls based on the mix_ratio
// mix_ratio of 1 = use first_control completely, 0 = use second_control completely, 0.5 = mix evenly
float ModePosHold : : mix_controls ( float mix_ratio , float first_control , float second_control )
{
mix_ratio = constrain_float ( mix_ratio , 0.0f , 1.0f ) ;
return mix_ratio * first_control + ( 1.0f - mix_ratio ) * second_control ;
}
// update_brake_angle_from_velocity - updates the brake_angle based on the vehicle's velocity and brake_gain
// brake_angle is slewed with the wpnav.poshold_brake_rate and constrained by the wpnav.poshold_braking_angle_max
// velocity is assumed to be in the same direction as lean angle so for pitch you should provide the velocity backwards (i.e. -ve forward velocity)
void ModePosHold : : update_brake_angle_from_velocity ( float & brake_angle , float velocity )
{
float lean_angle ;
float brake_rate = g . poshold_brake_rate ;
brake_rate / = 4.0f ;
if ( brake_rate < = 1.0f ) {
brake_rate = 1.0f ;
}
// calculate velocity-only based lean angle
if ( velocity > = 0 ) {
lean_angle = - brake_gain * velocity * ( 1.0f + 500.0f / ( velocity + 60.0f ) ) ;
} else {
lean_angle = - brake_gain * velocity * ( 1.0f + 500.0f / ( - velocity + 60.0f ) ) ;
}
// do not let lean_angle be too far from brake_angle
brake_angle = constrain_float ( lean_angle , brake_angle - brake_rate , brake_angle + brake_rate ) ;
// constrain final brake_angle
brake_angle = constrain_float ( brake_angle , - ( float ) g . poshold_brake_angle_max , ( float ) g . poshold_brake_angle_max ) ;
}
// update_wind_comp_estimate - updates wind compensation estimate
// should be called at the maximum loop rate when loiter is engaged
void ModePosHold : : update_wind_comp_estimate ( )
{
// check wind estimate start has not been delayed
if ( wind_comp_start_timer > 0 ) {
wind_comp_start_timer - - ;
return ;
}
// check horizontal velocity is low
if ( inertial_nav . get_speed_xy ( ) > POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX ) {
return ;
}
// get position controller accel target
// To-Do: clean this up by using accessor in loiter controller (or move entire PosHold controller to a library shared with loiter)
const Vector3f & accel_target = pos_control - > get_accel_target ( ) ;
// update wind compensation in earth-frame lean angles
if ( is_zero ( wind_comp_ef . x ) ) {
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
wind_comp_ef . x = accel_target . x ;
} else {
// low pass filter the position controller's lean angle output
wind_comp_ef . x = ( 1.0f - TC_WIND_COMP ) * wind_comp_ef . x + TC_WIND_COMP * accel_target . x ;
}
if ( is_zero ( wind_comp_ef . y ) ) {
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
wind_comp_ef . y = accel_target . y ;
} else {
// low pass filter the position controller's lean angle output
wind_comp_ef . y = ( 1.0f - TC_WIND_COMP ) * wind_comp_ef . y + TC_WIND_COMP * accel_target . y ;
}
}
// get_wind_comp_lean_angles - retrieve wind compensation angles in body frame roll and pitch angles
// should be called at the maximum loop rate
void ModePosHold : : get_wind_comp_lean_angles ( float & roll_angle , float & pitch_angle )
{
// reduce rate to 10hz
wind_comp_timer + + ;
if ( wind_comp_timer < POSHOLD_WIND_COMP_TIMER_10HZ ) {
return ;
}
wind_comp_timer = 0 ;
// convert earth frame desired accelerations to body frame roll and pitch lean angles
roll_angle = atanf ( ( - wind_comp_ef . x * ahrs . sin_yaw ( ) + wind_comp_ef . y * ahrs . cos_yaw ( ) ) / 981.0f ) * ( 18000.0f / M_PI ) ;
pitch_angle = atanf ( - ( wind_comp_ef . x * ahrs . cos_yaw ( ) + wind_comp_ef . y * ahrs . sin_yaw ( ) ) / 981.0f ) * ( 18000.0f / M_PI ) ;
}
// roll_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis
void ModePosHold : : roll_controller_to_pilot_override ( )
{
roll_mode = RPMode : : CONTROLLER_TO_PILOT_OVERRIDE ;
controller_to_pilot_timer_roll = POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER ;
// initialise pilot_roll to 0, wind_comp will be updated to compensate and poshold_update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value
pilot_roll = 0.0f ;
// store final controller output for mixing with pilot input
controller_final_roll = roll ;
}
// pitch_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis
void ModePosHold : : pitch_controller_to_pilot_override ( )
{
pitch_mode = RPMode : : CONTROLLER_TO_PILOT_OVERRIDE ;
controller_to_pilot_timer_pitch = POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER ;
// initialise pilot_pitch to 0, wind_comp will be updated to compensate and update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value
pilot_pitch = 0.0f ;
// store final loiter outputs for mixing with pilot input
controller_final_pitch = pitch ;
}
# endif