/// @file AP_MotorsHeli.h
/// @brief Motor control class for Traditional Heli
# pragma once
# include <inttypes.h>
# include <AP_Common/AP_Common.h>
# include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
# include <RC_Channel/RC_Channel.h>
# include <SRV_Channel/SRV_Channel.h>
# include "AP_Motors_Class.h"
# include "AP_MotorsHeli_RSC.h"
// servo output rates
# define AP_MOTORS_HELI_SPEED_DEFAULT 125 // default servo update rate for helicopters
// default swash min and max angles and positions
# define AP_MOTORS_HELI_SWASH_CYCLIC_MAX 2500
# define AP_MOTORS_HELI_COLLECTIVE_MIN 1250
# define AP_MOTORS_HELI_COLLECTIVE_MAX 1750
# define AP_MOTORS_HELI_COLLECTIVE_HOVER_DEFAULT 0.5f // the estimated hover throttle, 0 ~ 1
# define AP_MOTORS_HELI_COLLECTIVE_HOVER_TC 10.0f // time constant used to update estimated hover throttle, 0 ~ 1
# define AP_MOTORS_HELI_COLLECTIVE_HOVER_MIN 0.3f // minimum possible hover throttle
# define AP_MOTORS_HELI_COLLECTIVE_HOVER_MAX 0.8f // maximum possible hover throttle
# define AP_MOTORS_HELI_COLLECTIVE_MIN_DEG -90.0f // minimum collective blade pitch angle in deg
# define AP_MOTORS_HELI_COLLECTIVE_MAX_DEG 90.0f // maximum collective blade pitch angle in deg
# define AP_MOTORS_HELI_COLLECTIVE_LAND_MIN -1.0f // minimum landed collective blade pitch angle in deg for modes using althold
// flybar types
# define AP_MOTORS_HELI_NOFLYBAR 0
// rsc function output channels.
# define AP_MOTORS_HELI_RSC CH_8
class AP_HeliControls ;
/// @class AP_MotorsHeli
class AP_MotorsHeli : public AP_Motors {
public :
/// Constructor
AP_MotorsHeli ( uint16_t loop_rate ,
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT ) :
AP_Motors ( loop_rate , speed_hz ) ,
_main_rotor ( SRV_Channel : : k_heli_rsc , AP_MOTORS_HELI_RSC )
{
AP_Param : : setup_object_defaults ( this , var_info ) ;
} ;
// init
void init ( motor_frame_class frame_class , motor_frame_type frame_type ) override ;
// set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus)
void set_frame_class_and_type ( motor_frame_class frame_class , motor_frame_type frame_type ) override ;
// set update rate to motors - a value in hertz
virtual void set_update_rate ( uint16_t speed_hz ) override = 0 ;
// output_min - sets servos to neutral point with motors stopped
void output_min ( ) override ;
// output_test_seq - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
virtual void output_test_seq ( uint8_t motor_seq , int16_t pwm ) override = 0 ;
//
// heli specific methods
//
// parameter_check - returns true if helicopter specific parameters are sensible, used for pre-arm check
virtual bool parameter_check ( bool display_msg ) const ;
// has_flybar - returns true if we have a mechical flybar
virtual bool has_flybar ( ) const { return AP_MOTORS_HELI_NOFLYBAR ; }
// set_collective_for_landing - limits collective from going too low if we know we are landed
void set_collective_for_landing ( bool landing ) { _heliflags . landing_collective = landing ; }
// set_inverted_flight - enables/disables inverted flight
void set_inverted_flight ( bool inverted ) { _heliflags . inverted_flight = inverted ; }
// get_rsc_mode - gets the current rotor speed control method
uint8_t get_rsc_mode ( ) const { return _main_rotor . get_control_mode ( ) ; }
// get_rsc_setpoint - gets contents of _rsc_setpoint parameter (0~1)
float get_rsc_setpoint ( ) const { return _main_rotor . _rsc_setpoint . get ( ) * 0.01f ; }
// set_rpm - for rotor speed governor
virtual void set_rpm ( float rotor_rpm ) = 0 ;
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1
virtual void set_desired_rotor_speed ( float desired_speed ) = 0 ;
// get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1
virtual float get_desired_rotor_speed ( ) const = 0 ;
// get_main_rotor_speed - estimated rotor speed when no governor or speed sensor used
virtual float get_main_rotor_speed ( ) const = 0 ;
// return true if the main rotor is up to speed
bool rotor_runup_complete ( ) const { return _heliflags . rotor_runup_complete ; }
// rotor_speed_above_critical - return true if rotor speed is above that critical for flight
virtual bool rotor_speed_above_critical ( ) const = 0 ;
//get rotor governor output
virtual float get_governor_output ( ) const = 0 ;
//get engine throttle output
virtual float get_control_output ( ) const = 0 ;
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
virtual uint16_t get_motor_mask ( ) override = 0 ;
virtual void set_acro_tail ( bool set ) { }
// ext_gyro_gain - set external gyro gain in range 0 ~ 1
virtual void ext_gyro_gain ( float gain ) { }
// output - sends commands to the motors
void output ( ) override ;
// supports_yaw_passthrough
virtual bool supports_yaw_passthrough ( ) const { return false ; }
// update estimated throttle required to hover
void update_throttle_hover ( float dt ) ;
float get_throttle_hover ( ) const override { return constrain_float ( _collective_hover , AP_MOTORS_HELI_COLLECTIVE_HOVER_MIN , AP_MOTORS_HELI_COLLECTIVE_HOVER_MAX ) ; }
// accessor to get the takeoff collective flag signifying that current collective is greater than collective required to indicate takeoff
bool get_takeoff_collective ( ) const { return _heliflags . takeoff_collective ; }
// accessor to get the land min collective flag signifying that current collective is lower than collective required for landing
bool get_below_land_min_coll ( ) const { return _heliflags . below_land_min_coll ; }
// support passing init_targets_on_arming flag to greater code
bool init_targets_on_arming ( ) const override { return _heliflags . init_targets_on_arming ; }
// set_in_autorotation - allows main code to set when aircraft is in autorotation.
void set_in_autorotation ( bool autorotation ) { _heliflags . in_autorotation = autorotation ; }
// set_enable_bailout - allows main code to set when RSC can immediately ramp engine instantly
void set_enable_bailout ( bool bailout ) { _heliflags . enable_bailout = bailout ; }
// return true if the servo test is still running/pending
bool servo_test_running ( ) const { return _heliflags . servo_test_running ; }
// set land complete flag
void set_land_complete ( bool landed ) { _heliflags . land_complete = landed ; }
// enum for heli optional features
enum class HeliOption {
USE_LEAKY_I = ( 1 < < 0 ) , // 1
} ;
// use leaking integrator management scheme
bool using_leaky_integrator ( ) const { return heli_option ( HeliOption : : USE_LEAKY_I ) ; }
// var_info for holding Parameter information
static const struct AP_Param : : GroupInfo var_info [ ] ;
const char * get_frame_string ( ) const override { return " HELI " ; }
protected :
// manual servo modes (used for setup)
enum ServoControlModes {
SERVO_CONTROL_MODE_AUTOMATED = 0 ,
SERVO_CONTROL_MODE_MANUAL_PASSTHROUGH ,
SERVO_CONTROL_MODE_MANUAL_MAX ,
SERVO_CONTROL_MODE_MANUAL_CENTER ,
SERVO_CONTROL_MODE_MANUAL_MIN ,
SERVO_CONTROL_MODE_MANUAL_OSCILLATE ,
} ;
// output - sends commands to the motors
void output_armed_stabilizing ( ) override ;
void output_armed_zero_throttle ( ) ;
void output_disarmed ( ) ;
// external objects we depend upon
AP_MotorsHeli_RSC _main_rotor ; // main rotor
// update_motor_controls - sends commands to motor controllers
virtual void update_motor_control ( RotorControlState state ) = 0 ;
// run spool logic
void output_logic ( ) ;
// output_to_motors - sends commands to the motors
virtual void output_to_motors ( ) = 0 ;
// reset_flight_controls - resets all controls and scalars to flight status
void reset_flight_controls ( ) ;
// update the throttle input filter
void update_throttle_filter ( ) override ;
// move_actuators - moves swash plate and tail rotor
virtual void move_actuators ( float roll_out , float pitch_out , float coll_in , float yaw_out ) = 0 ;
// reset_swash_servo - free up swash servo for maximum movement
void reset_swash_servo ( SRV_Channel : : Aux_servo_function_t function ) ;
// init_outputs - initialise Servo/PWM ranges and endpoints
virtual bool init_outputs ( ) = 0 ;
// calculate_armed_scalars - must be implemented by child classes
virtual void calculate_armed_scalars ( ) = 0 ;
// calculate_scalars - must be implemented by child classes
virtual void calculate_scalars ( ) = 0 ;
// servo_test - move servos through full range of movement
// to be overloaded by child classes, different vehicle types would have different movement patterns
virtual void servo_test ( ) = 0 ;
// write to a swash servo. output value is pwm
void rc_write_swash ( uint8_t chan , float swash_in ) ;
// save parameters as part of disarming
void save_params_on_disarm ( ) override ;
// Determines if _heli_options bit is set
bool heli_option ( HeliOption opt ) const ;
// updates the takeoff collective flag indicating that current collective is greater than collective required to indicate takeoff.
void update_takeoff_collective_flag ( float coll_out ) ;
// enum values for HOVER_LEARN parameter
enum HoverLearn {
HOVER_LEARN_DISABLED = 0 ,
HOVER_LEARN_ONLY = 1 ,
HOVER_LEARN_AND_SAVE = 2
} ;
// flags bitmask
struct heliflags_type {
uint8_t landing_collective : 1 ; // true if collective is setup for landing which has much higher minimum
uint8_t rotor_runup_complete : 1 ; // true if the rotors have had enough time to wind up
uint8_t inverted_flight : 1 ; // true for inverted flight
uint8_t init_targets_on_arming : 1 ; // 0 if targets were initialized, 1 if targets were not initialized after arming
uint8_t save_rsc_mode : 1 ; // used to determine the rsc mode needs to be saved while disarmed
uint8_t in_autorotation : 1 ; // true if aircraft is in autorotation
uint8_t enable_bailout : 1 ; // true if allowing RSC to quickly ramp up engine
uint8_t servo_test_running : 1 ; // true if servo_test is running
uint8_t land_complete : 1 ; // true if aircraft is landed
uint8_t takeoff_collective : 1 ; // true if collective is above 30% between H_COL_MID and H_COL_MAX
uint8_t below_land_min_coll : 1 ; // true if collective is below H_COL_LAND_MIN
} _heliflags ;
// parameters
AP_Int16 _cyclic_max ; // Maximum cyclic angle of the swash plate in centi-degrees
AP_Int16 _collective_min ; // Lowest possible servo position for the swashplate
AP_Int16 _collective_max ; // Highest possible servo position for the swashplate
AP_Int8 _servo_mode ; // Pass radio inputs directly to servos during set-up through mission planner
AP_Int8 _servo_test ; // sets number of cycles to test servo movement on bootup
AP_Float _collective_hover ; // estimated collective required to hover throttle in the range 0 ~ 1
AP_Int8 _collective_hover_learn ; // enable/disabled hover collective learning
AP_Int8 _heli_options ; // bitmask for optional features
AP_Float _collective_zero_thrust_deg ; // Zero thrust blade collective pitch in degrees
AP_Float _collective_land_min_deg ; // Minimum Landed collective blade pitch in degrees for non-manual collective modes (i.e. modes that use altitude hold)
AP_Float _collective_max_deg ; // Maximum collective blade pitch angle in deg that corresponds to the PWM set for maximum collective pitch (H_COL_MAX)
AP_Float _collective_min_deg ; // Minimum collective blade pitch angle in deg that corresponds to the PWM set for minimum collective pitch (H_COL_MIN)
// internal variables
float _collective_zero_thrust_pct ; // collective zero thrutst parameter value converted to 0 ~ 1 range
float _collective_land_min_pct ; // collective land min parameter value converted to 0 ~ 1 range
uint8_t _servo_test_cycle_counter = 0 ; // number of test cycles left to run after bootup
motor_frame_type _frame_type ;
motor_frame_class _frame_class ;
} ;