/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
# ifndef __AP_INERTIAL_SENSOR_H__
# define __AP_INERTIAL_SENSOR_H__
# define GRAVITY 9.80665
// Gyro and Accelerometer calibration criteria
# define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0
# define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0
# include <stdint.h>
# include <AP_HAL.h>
# include <AP_Math.h>
# include "AP_InertialSensor_UserInteract.h"
/* AP_InertialSensor is an abstraction for gyro and accel measurements
* which are correctly aligned to the body axes and scaled to SI units .
*
* Gauss - Newton accel calibration routines borrowed from Rolfe Schmidt
* blog post describing the method : http : //chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
* original sketch available at http : //rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
*/
class AP_InertialSensor
{
public :
AP_InertialSensor ( ) ;
enum Start_style {
COLD_START = 0 ,
WARM_START
} ;
// the rate that updates will be available to the application
enum Sample_rate {
RATE_50HZ ,
RATE_100HZ ,
RATE_200HZ
} ;
/// Perform startup initialisation.
///
/// Called to initialise the state of the IMU.
///
/// For COLD_START, implementations using real sensors can assume
/// that the airframe is stationary and nominally oriented.
///
/// For WARM_START, no assumptions should be made about the
/// orientation or motion of the airframe. Calibration should be
/// as for the previous COLD_START call.
///
/// @param style The initialisation startup style.
///
virtual void init ( Start_style style ,
Sample_rate sample_rate ,
void ( * flash_leds_cb ) ( bool on ) ) ;
/// Perform cold startup initialisation for just the accelerometers.
///
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work.
///
virtual void init_accel ( void ( * flash_leds_cb ) ( bool on ) ) ;
# if !defined( __AVR_ATmega1280__ )
// perform accelerometer calibration including providing user instructions
// and feedback
virtual bool calibrate_accel ( void ( * flash_leds_cb ) ( bool on ) ,
AP_InertialSensor_UserInteract * interact ) ;
# endif
/// Perform cold-start initialisation for just the gyros.
///
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work
///
virtual void init_gyro ( void ( * flash_leds_cb ) ( bool on ) ) ;
/// Fetch the current gyro values
///
/// @returns vector of rotational rates in radians/sec
///
Vector3f get_gyro ( void ) { return _gyro ; }
void set_gyro ( Vector3f gyro ) { _gyro = gyro ; }
// set gyro offsets in radians/sec
Vector3f get_gyro_offsets ( void ) { return _gyro_offset ; }
void set_gyro_offsets ( Vector3f offsets ) { _gyro_offset . set ( offsets ) ; }
/// Fetch the current accelerometer values
///
/// @returns vector of current accelerations in m/s/s
///
Vector3f get_accel ( void ) { return _accel ; }
void set_accel ( Vector3f accel ) { _accel = accel ; }
// get accel offsets in m/s/s
Vector3f get_accel_offsets ( ) { return _accel_offset ; }
void set_accel_offsets ( Vector3f offsets ) { _accel_offset . set ( offsets ) ; }
// get accel scale
Vector3f get_accel_scale ( ) { return _accel_scale ; }
/* Update the sensor data, so that getters are nonblocking.
* Returns a bool of whether data was updated or not .
*/
virtual bool update ( ) = 0 ;
// check if the sensors have new data
virtual bool new_data_available ( void ) = 0 ;
/* Temperature, in degrees celsius, of the gyro. */
virtual float temperature ( ) = 0 ;
/* get_delta_time returns the time period in seconds
* overwhich the sensor data was collected
*/
virtual float get_delta_time ( ) = 0 ;
// return the maximum gyro drift rate in radians/s/s. This
// depends on what gyro chips are being used
virtual float get_gyro_drift_rate ( void ) = 0 ;
// get number of samples read from the sensors
virtual uint16_t num_samples_available ( ) = 0 ;
// class level parameters
static const struct AP_Param : : GroupInfo var_info [ ] ;
// set overall board orientation
void set_board_orientation ( enum Rotation orientation ) {
_board_orientation = orientation ;
}
protected :
// sensor specific init to be overwritten by descendant classes
virtual uint16_t _init_sensor ( Sample_rate sample_rate ) = 0 ;
// no-save implementations of accel and gyro initialisation routines
virtual void _init_accel ( void ( * flash_leds_cb ) ( bool on ) = NULL ) ;
virtual void _init_gyro ( void ( * flash_leds_cb ) ( bool on ) = NULL ) ;
# if !defined( __AVR_ATmega1280__ )
// Calibration routines borrowed from Rolfe Schmidt
// blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
// _calibrate_accel - perform low level accel calibration
virtual bool _calibrate_accel ( Vector3f accel_sample [ 6 ] , Vector3f & accel_offsets , Vector3f & accel_scale ) ;
virtual void _calibrate_update_matrices ( float dS [ 6 ] , float JS [ 6 ] [ 6 ] , float beta [ 6 ] , float data [ 3 ] ) ;
virtual void _calibrate_reset_matrices ( float dS [ 6 ] , float JS [ 6 ] [ 6 ] ) ;
virtual void _calibrate_find_delta ( float dS [ 6 ] , float JS [ 6 ] [ 6 ] , float delta [ 6 ] ) ;
# endif
// save parameters to eeprom
void _save_parameters ( ) ;
// Most recent accelerometer reading obtained by ::update
Vector3f _accel ;
// Most recent gyro reading obtained by ::update
Vector3f _gyro ;
// product id
AP_Int16 _product_id ;
// accelerometer scaling and offsets
AP_Vector3f _accel_scale ;
AP_Vector3f _accel_offset ;
AP_Vector3f _gyro_offset ;
// filtering frequency (0 means default)
AP_Int8 _mpu6000_filter ;
// board orientation from AHRS
enum Rotation _board_orientation ;
} ;
# include "AP_InertialSensor_Oilpan.h"
# include "AP_InertialSensor_MPU6000.h"
# include "AP_InertialSensor_Stub.h"
# include "AP_InertialSensor_PX4.h"
# include "AP_InertialSensor_UserInteract_Stream.h"
# endif // __AP_INERTIAL_SENSOR_H__