# include "Rover.h"
# include <AP_RangeFinder/AP_RangeFinder_Backend.h>
// check for new compass data - 10Hz
void Rover : : update_compass ( void )
{
compass . read ( ) ;
}
// Save compass offsets
void Rover : : compass_save ( ) {
if ( AP : : compass ( ) . available ( ) & &
compass . get_learn_type ( ) > = Compass : : LEARN_INTERNAL & &
! arming . is_armed ( ) ) {
compass . save_offsets ( ) ;
}
}
// update wheel encoders
void Rover : : update_wheel_encoder ( )
{
// exit immediately if not enabled
if ( g2 . wheel_encoder . num_sensors ( ) = = 0 ) {
return ;
}
// update encoders
g2 . wheel_encoder . update ( ) ;
// save cumulative distances at current time (in meters) for reporting to GCS
for ( uint8_t i = 0 ; i < g2 . wheel_encoder . num_sensors ( ) ; i + + ) {
wheel_encoder_last_distance_m [ i ] = g2 . wheel_encoder . get_distance ( i ) ;
}
// send wheel encoder delta angle and delta time to EKF
// this should not be done at more than 50hz
// initialise on first iteration
if ( ! wheel_encoder_initialised ) {
wheel_encoder_initialised = true ;
for ( uint8_t i = 0 ; i < g2 . wheel_encoder . num_sensors ( ) ; i + + ) {
wheel_encoder_last_angle_rad [ i ] = g2 . wheel_encoder . get_delta_angle ( i ) ;
wheel_encoder_last_reading_ms [ i ] = g2 . wheel_encoder . get_last_reading_ms ( i ) ;
}
return ;
}
// on each iteration send data from alternative wheel encoders
wheel_encoder_last_index_sent + + ;
if ( wheel_encoder_last_index_sent > = g2 . wheel_encoder . num_sensors ( ) ) {
wheel_encoder_last_index_sent = 0 ;
}
// get current time, total delta angle (since startup) and update time from sensor
const float curr_angle_rad = g2 . wheel_encoder . get_delta_angle ( wheel_encoder_last_index_sent ) ;
const uint32_t sensor_reading_ms = g2 . wheel_encoder . get_last_reading_ms ( wheel_encoder_last_index_sent ) ;
const uint32_t now_ms = AP_HAL : : millis ( ) ;
// calculate angular change (in radians)
# if HAL_NAVEKF3_AVAILABLE
const float delta_angle = curr_angle_rad - wheel_encoder_last_angle_rad [ wheel_encoder_last_index_sent ] ;
# endif
wheel_encoder_last_angle_rad [ wheel_encoder_last_index_sent ] = curr_angle_rad ;
// calculate delta time using time between sensor readings or time since last send to ekf (whichever is shorter)
uint32_t sensor_diff_ms = sensor_reading_ms - wheel_encoder_last_reading_ms [ wheel_encoder_last_index_sent ] ;
if ( sensor_diff_ms = = 0 | | sensor_diff_ms > 100 ) {
// if no sensor update or time difference between sensor readings is too long use time since last send to ekf
sensor_diff_ms = now_ms - wheel_encoder_last_reading_ms [ wheel_encoder_last_index_sent ] ;
wheel_encoder_last_reading_ms [ wheel_encoder_last_index_sent ] = now_ms ;
} else {
wheel_encoder_last_reading_ms [ wheel_encoder_last_index_sent ] = sensor_reading_ms ;
}
# if HAL_NAVEKF3_AVAILABLE
const float delta_time = sensor_diff_ms * 0.001f ;
/* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad)
* delTime is the time interval for the measurement of delAng ( sec )
* timeStamp_ms is the time when the rotation was last measured ( msec )
* posOffset is the XYZ body frame position of the wheel hub ( m )
*/
ahrs . EKF3 . writeWheelOdom ( delta_angle ,
delta_time ,
wheel_encoder_last_reading_ms [ wheel_encoder_last_index_sent ] ,
g2 . wheel_encoder . get_pos_offset ( wheel_encoder_last_index_sent ) ,
g2 . wheel_encoder . get_wheel_radius ( wheel_encoder_last_index_sent ) ) ;
# endif
}
// read the rangefinders
void Rover : : read_rangefinders ( void )
{
rangefinder . update ( ) ;
Log_Write_Depth ( ) ;
}
/*
ask airspeed sensor for a new value , duplicated from plane
*/
void Rover : : read_airspeed ( void )
{
g2 . airspeed . update ( should_log ( MASK_LOG_IMU ) ) ;
}
/*
update RPM sensors
*/
void Rover : : rpm_update ( void )
{
rpm_sensor . update ( ) ;
if ( rpm_sensor . enabled ( 0 ) | | rpm_sensor . enabled ( 1 ) ) {
if ( should_log ( MASK_LOG_RC ) ) {
logger . Write_RPM ( rpm_sensor ) ;
}
}
}