Browse Source

增加proximity uavcan

AP_Proximity,增加uavcan类型=9
AP_Proximity_UAVCAN,uavcan驱动
dsdl,增加range_sensor
apm_2208
Brown.Z 3 years ago
parent
commit
050d98eb0e
  1. 12
      ArduCopter/APM_Config.h
  2. 8
      libraries/AP_Proximity/AP_Proximity.cpp
  3. 1
      libraries/AP_Proximity/AP_Proximity.h
  4. 250
      libraries/AP_Proximity/AP_Proximity_UAVCAN.cpp
  5. 72
      libraries/AP_Proximity/AP_Proximity_UAVCAN.h
  6. 2
      libraries/AP_UAVCAN/AP_UAVCAN.cpp
  7. 23
      libraries/AP_UAVCAN/dsdl/zrzk/equipment/range_sensor/26110.Proximity.uavcan

12
ArduCopter/APM_Config.h

@ -51,11 +51,11 @@ @@ -51,11 +51,11 @@
// Put your variable definitions into the UserVariables.h file (or another file name and then change the #define below).
//#define USERHOOK_VARIABLES "UserVariables.h"
// Put your custom code into the UserCode.cpp with function names matching those listed below and ensure the appropriate #define below is uncommented below
//#define USERHOOK_INIT userhook_init(); // for code to be run once at startup
//#define USERHOOK_FASTLOOP userhook_FastLoop(); // for code to be run at 100hz
//#define USERHOOK_50HZLOOP userhook_50Hz(); // for code to be run at 50hz
//#define USERHOOK_MEDIUMLOOP userhook_MediumLoop(); // for code to be run at 10hz
//#define USERHOOK_SLOWLOOP userhook_SlowLoop(); // for code to be run at 3.3hz
//#define USERHOOK_SUPERSLOWLOOP userhook_SuperSlowLoop(); // for code to be run at 1hz
#define USERHOOK_INIT userhook_init(); // for code to be run once at startup
#define USERHOOK_FASTLOOP userhook_FastLoop(); // for code to be run at 100hz
#define USERHOOK_50HZLOOP userhook_50Hz(); // for code to be run at 50hz
#define USERHOOK_MEDIUMLOOP userhook_MediumLoop(); // for code to be run at 10hz
#define USERHOOK_SLOWLOOP userhook_SlowLoop(); // for code to be run at 3.3hz
#define USERHOOK_SUPERSLOWLOOP userhook_SuperSlowLoop(); // for code to be run at 1hz
// #define USERHOOK_AUXSWITCH ENABLED // for code to handle user aux switches
//#define USER_PARAMS_ENABLED ENABLED // to enable user parameters

8
libraries/AP_Proximity/AP_Proximity.cpp

@ -26,6 +26,7 @@ @@ -26,6 +26,7 @@
#include "AP_Proximity_SITL.h"
#include "AP_Proximity_AirSimSITL.h"
#include "AP_Proximity_Cygbot_D1.h"
#include "AP_Proximity_UAVCAN.h"
#include <AP_Logger/AP_Logger.h>
@ -345,6 +346,13 @@ void AP_Proximity::detect_instance(uint8_t instance) @@ -345,6 +346,13 @@ void AP_Proximity::detect_instance(uint8_t instance)
return;
}
break;
case Type::UAVCAN:
#if HAL_CANMANAGER_ENABLED
state[instance].instance = instance;
drivers[instance] = AP_Proximity_UAVCAN::probe(*this, state[instance]);
return;
#endif
break;
case Type::CYGBOT_D1:
#if AP_PROXIMITY_CYGBOT_ENABLED

1
libraries/AP_Proximity/AP_Proximity.h

@ -51,6 +51,7 @@ public: @@ -51,6 +51,7 @@ public:
TRTOWEREVO = 6,
SF40C = 7,
SF45B = 8,
UAVCAN = 9,
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL = 10,
AirSimSITL = 12,

250
libraries/AP_Proximity/AP_Proximity_UAVCAN.cpp

@ -0,0 +1,250 @@ @@ -0,0 +1,250 @@
#include <AP_HAL/AP_HAL.h>
#if HAL_CANMANAGER_ENABLED
#include <GCS_MAVLink/GCS.h>
#include "AP_Proximity_UAVCAN.h"
#include <AP_CANManager/AP_CANManager.h>
#include <AP_UAVCAN/AP_UAVCAN.h>
#include <zrzk/equipment/range_sensor/Proximity.hpp>
#define PRX_DEBUG 0
#if PRX_DEBUG
#include <GCS_MAVLink/GCS.h>
# define Prx_Debug(fmt, args ...) gcs().send_text(MAV_SEVERITY_INFO, "prx-%d: " fmt "", __LINE__, ## args)
#else
# define Prx_Debug(fmt, args ...)
#endif
extern const AP_HAL::HAL &hal;
#define debug_proximity_uavcan(level_debug, can_driver, fmt, args...) \
do \
{ \
if ((level_debug) <= AP::can().get_debug_level_driver(can_driver)) \
{ \
hal.console->printf(fmt, ##args); \
} \
} while (0)
HAL_Semaphore AP_Proximity_UAVCAN::_sem_registry;
UC_REGISTRY_BINDER(ProximityCb, zrzk::equipment::range_sensor::Proximity);
uint8_t AP_Proximity_UAVCAN::_node_id = 0;
AP_Proximity_UAVCAN* AP_Proximity_UAVCAN::_driver = nullptr;
AP_UAVCAN* AP_Proximity_UAVCAN::_ap_uavcan = nullptr;
AP_Proximity_UAVCAN::DetectedModules AP_Proximity_UAVCAN::_detected_modules[] = {0};
AP_Proximity_UAVCAN::AP_Proximity_UAVCAN(AP_Proximity &_frontend,
AP_Proximity::Proximity_State &_state) :
AP_Proximity_Backend(_frontend, _state)
{
_driver = this;
}
void AP_Proximity_UAVCAN::subscribe_msgs(AP_UAVCAN *ap_uavcan)
{
if (ap_uavcan == nullptr)
{
Prx_Debug("ap_uavcan:nullptr" );
return;
}
Prx_Debug("ap_uavcan:subscribe_msgs");
auto *node = ap_uavcan->get_node();
uavcan::Subscriber<zrzk::equipment::range_sensor::Proximity, ProximityCb> *proximity_listener;
proximity_listener = new uavcan::Subscriber<zrzk::equipment::range_sensor::Proximity, ProximityCb>(*node);
// Register method to handle incoming RangeFinder measurement
const int proximity_listener_res = proximity_listener->start(ProximityCb(ap_uavcan, &handle_proximity_data_trampoline));
if (proximity_listener_res < 0)
{
AP_HAL::panic("UAVCAN RangeFinder subscriber start problem\n\r");
return;
}
}
AP_Proximity_Backend *AP_Proximity_UAVCAN::probe(AP_Proximity &_frontend,
AP_Proximity::Proximity_State &_state)
{
WITH_SEMAPHORE(_sem_registry);
AP_Proximity_UAVCAN *backend = nullptr;
Prx_Debug("---------- AP_Proximity_UAVCAN ----------");
backend = new AP_Proximity_UAVCAN(_frontend, _state);
if (backend != nullptr)
{
Prx_Debug("backend:%d",(int)backend);
}else{
Prx_Debug("faild,backend");
}
Prx_Debug("---------- AP_Proximity_UAVCAN ----------\n");
return backend;
}
AP_Proximity_UAVCAN *AP_Proximity_UAVCAN::get_uavcan_backend(AP_UAVCAN *ap_uavcan,uint8_t node_id)
{
if (ap_uavcan == nullptr)
{
return nullptr;
}
Prx_Debug("get_uavcan:%d",node_id);
for (uint8_t i = 0; i < PROXIMITY_MAX_INSTANCES; i++)
{
if (_detected_modules[i].driver != nullptr &&
_detected_modules[i].ap_uavcan == ap_uavcan&&
_detected_modules[i].node_id == node_id)
{
return _detected_modules[i].driver;
}
}
bool detected = false;
for (uint8_t i = 0; i < PROXIMITY_MAX_INSTANCES; i++)
{
if (_detected_modules[i].ap_uavcan == ap_uavcan &&
_detected_modules[i].node_id == node_id)
{
// detected
detected = true;
break;
}
}
if (!detected)
{
for (uint8_t i = 0; i < PROXIMITY_MAX_INSTANCES; i++)
{
if (_detected_modules[i].ap_uavcan == nullptr)
{
_detected_modules[i].ap_uavcan = ap_uavcan;
_detected_modules[i].node_id = node_id;
break;
}
}
}
return nullptr;
}
float AP_Proximity_UAVCAN::distance_max() const
{
return 40.0f;
}
float AP_Proximity_UAVCAN::distance_min() const
{
return 0.20f;
}
void AP_Proximity_UAVCAN::update(void)
{
WITH_SEMAPHORE(_sem_proximity);
// update_sector_data(0, _interim_data.d1_cm); // d1
// update_sector_data(45, _interim_data.d2_cm); // d8
// update_sector_data(90, _interim_data.d3_cm); // d7
// update_sector_data(135, _interim_data.d4_cm); // d6
// update_sector_data(180, _interim_data.d5_cm); // d5
// update_sector_data(225, _interim_data.d6_cm); // d4
// update_sector_data(270, _interim_data.d7_cm); // d3
// update_sector_data(315, _interim_data.d8_cm); // d2
update_sector_data(0, _interim_data.d1_cm); // d1
update_sector_data(45, _interim_data.d2_cm); // d8
update_sector_data(315, _interim_data.d3_cm); // d7
if ((_last_distance_received_ms == 0) || (AP_HAL::millis() - _last_distance_received_ms > PROXIMITY_UAVCAN_TIMEOUT_MS))
{
set_status(AP_Proximity::Status::NoData);
// gcs().send_text(MAV_SEVERITY_INFO, "NoData\r\n");
}
else
{
set_status(AP_Proximity::Status::Good);
}
}
void AP_Proximity_UAVCAN::handle_proximity_data_trampoline(AP_UAVCAN *ap_uavcan, uint8_t node_id, const ProximityCb &cb)
{
if (_driver == nullptr) {
Prx_Debug("----nullptr : ap:%d,id:%d ----",(int)_ap_uavcan,_node_id);
return;
}
if (_ap_uavcan == nullptr) {
_ap_uavcan = ap_uavcan;
_node_id = node_id;
Prx_Debug("---- uavcan: ap:%d,id:%d ----",(int)_ap_uavcan,_node_id);
}
Prx_Debug("handle_proximity: ap:%d,id:%d ,%d,addr:%d",(int)_ap_uavcan,_node_id,cb.msg->d0,cb.msg->sensor_id);
if (_ap_uavcan == ap_uavcan && _node_id == node_id) {
WITH_SEMAPHORE(_sem_registry);
_driver->_interim_data.d1_cm = cb.msg->d0;
_driver->_interim_data.d2_cm = cb.msg->d45;
_driver->_interim_data.d3_cm = cb.msg->d90;
_driver->_interim_data.d4_cm = cb.msg->d135;
_driver->_interim_data.d5_cm = cb.msg->d180;
_driver->_interim_data.d6_cm = cb.msg->d225;
_driver->_interim_data.d7_cm = cb.msg->d270;
_driver->_interim_data.d8_cm = cb.msg->d315;
_driver->_last_distance_received_ms = AP_HAL::millis();
}
/*
AP_Proximity_UAVCAN *driver = get_uavcan_backend(ap_uavcan,node_id);
if (driver == nullptr)
{
return;
}
driver->handle_proximity_data(cb);
*/
}
void AP_Proximity_UAVCAN::handle_proximity_data(const ProximityCb &cb)
{
WITH_SEMAPHORE(_sem_proximity);
_interim_data.d1_cm = cb.msg->d0;
_interim_data.d2_cm = cb.msg->d45;
_interim_data.d3_cm = cb.msg->d90;
_interim_data.d4_cm = cb.msg->d135;
_interim_data.d5_cm = cb.msg->d180;
_interim_data.d6_cm = cb.msg->d225;
_interim_data.d7_cm = cb.msg->d270;
_interim_data.d8_cm = cb.msg->d315;
_last_distance_received_ms = AP_HAL::millis();
// _last_sample_time_ms = AP_HAL::millis();
}
void AP_Proximity_UAVCAN::update_sector_data(int16_t angle_deg, uint16_t distance_cm)
{
// Get location on 3-D boundary based on angle to the object
const AP_Proximity_Boundary_3D::Face face = boundary.get_face(angle_deg);
if ((distance_cm != 0xffff) && !ignore_reading(angle_deg, distance_cm * 0.01f, false)) {
boundary.set_face_attributes(face, angle_deg, ((float) distance_cm) / 100);
// update OA database
database_push(angle_deg, ((float) distance_cm) / 100);
} else {
boundary.reset_face(face);
}
_last_distance_received_ms = AP_HAL::millis();
/*
uint8_t sector;
if(convert_angle_to_sector(angle_deg,sector)){
_angle[sector] = angle_deg;
_distance[sector] = ((float)distance_cm) / 100;
_distance_valid[sector] = (_distance[sector] > distance_min() && _distance[sector] < distance_max());
update_boundary_for_sector(sector, true);
}
*/
}
#endif

72
libraries/AP_Proximity/AP_Proximity_UAVCAN.h

@ -0,0 +1,72 @@ @@ -0,0 +1,72 @@
#pragma once
#include "AP_Proximity_Backend.h"
#if HAL_CANMANAGER_ENABLED
#include <AP_UAVCAN/AP_UAVCAN.h>
class ProximityCb;
#define PROXIMITY_UAVCAN_TIMEOUT_MS 300
class AP_Proximity_UAVCAN : public AP_Proximity_Backend
{
public:
AP_Proximity_UAVCAN(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state);
void update(void) override;
// get maximum and minimum distances (in meters) of sensor
float distance_max() const override;
float distance_min() const override;
static void subscribe_msgs(AP_UAVCAN *ap_uavcan);
static AP_Proximity_Backend *probe(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state);
static void handle_proximity_data_trampoline(AP_UAVCAN *ap_uavcan, uint8_t node_id, const ProximityCb &cb);
//uint8_t _instance;
//AP_Proximity::Proximity_State _status;
private:
static AP_Proximity_UAVCAN *get_uavcan_backend(AP_UAVCAN *ap_uavcan,uint8_t node_id);
static AP_Proximity_UAVCAN* _driver;
// inline void register_sensor()
// {
// // instance = frontend.register_sensor();
// }
uint32_t _last_distance_received_ms;
void handle_proximity_data(const ProximityCb &cb);
struct Proximity_Data
{
uint16_t d1_cm;
uint16_t d2_cm;
uint16_t d3_cm;
uint16_t d4_cm;
uint16_t d5_cm;
uint16_t d6_cm;
uint16_t d7_cm;
uint16_t d8_cm;
} _interim_data;
void update_sector_data(int16_t angle_deg, uint16_t distance_cm);
uint16_t handle_data_valid(uint16_t data);
static struct DetectedModules
{
AP_UAVCAN *ap_uavcan;
uint8_t node_id;
AP_Proximity_UAVCAN *driver;
} _detected_modules[PROXIMITY_MAX_INSTANCES];
static HAL_Semaphore _sem_registry;
HAL_Semaphore _sem_proximity;
static AP_UAVCAN* _ap_uavcan;
static uint8_t _node_id;
};
#endif //HAL_WITH_UAVCAN

2
libraries/AP_UAVCAN/AP_UAVCAN.cpp

@ -62,6 +62,7 @@ @@ -62,6 +62,7 @@
#include "AP_UAVCAN_pool.h"
#include <zrzk/equipment/indication/ZrRGB.hpp>
#include <AP_Proximity/AP_Proximity_UAVCAN.h>
#define LED_DELAY_US 50000
@ -358,6 +359,7 @@ void AP_UAVCAN::init(uint8_t driver_index, bool enable_filters) @@ -358,6 +359,7 @@ void AP_UAVCAN::init(uint8_t driver_index, bool enable_filters)
#if HAL_EFI_ENABLED
AP_EFI_DroneCAN::subscribe_msgs(this);
#endif
AP_Proximity_UAVCAN::subscribe_msgs(this);
act_out_array[driver_index] = new uavcan::Publisher<uavcan::equipment::actuator::ArrayCommand>(*_node);
act_out_array[driver_index]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(2));

23
libraries/AP_UAVCAN/dsdl/zrzk/equipment/range_sensor/26110.Proximity.uavcan

@ -0,0 +1,23 @@ @@ -0,0 +1,23 @@
uint8 sensor_id
uint5 SENSOR_TYPE_UNDEFINED = 0
uint5 SENSOR_TYPE_SONAR = 1
uint5 SENSOR_TYPE_LIDAR = 2
uint5 SENSOR_TYPE_RADAR = 3
uint5 sensor_type
uint3 READING_TYPE_UNDEFINED = 0 # Range is unknown
uint3 READING_TYPE_VALID_RANGE = 1 # Range field contains valid distance
uint3 READING_TYPE_TOO_CLOSE = 2 # Range field contains min range for the sensor
uint3 READING_TYPE_TOO_FAR = 3 # Range field contains max range for the sensor
uint3 reading_type
uint16 d0 # Meters distance_cm
uint16 d45
uint16 d90
uint16 d135
uint16 d180
uint16 d225
uint16 d270
uint16 d315
Loading…
Cancel
Save