|
|
|
@ -18,7 +18,12 @@
@@ -18,7 +18,12 @@
|
|
|
|
|
#include <AP_Common.h> |
|
|
|
|
#include <AP_Math.h> |
|
|
|
|
#include <GCS_MAVLink.h> |
|
|
|
|
#include <GCS.h> |
|
|
|
|
#include "AP_Terrain.h" |
|
|
|
|
#include <assert.h> |
|
|
|
|
#include <stdio.h> |
|
|
|
|
|
|
|
|
|
#if HAVE_AP_TERRAIN |
|
|
|
|
|
|
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
|
|
|
|
|
@ -43,106 +48,121 @@ const AP_Param::GroupInfo AP_Terrain::var_info[] PROGMEM = {
@@ -43,106 +48,121 @@ const AP_Param::GroupInfo AP_Terrain::var_info[] PROGMEM = {
|
|
|
|
|
// constructor
|
|
|
|
|
AP_Terrain::AP_Terrain(AP_AHRS &_ahrs) : |
|
|
|
|
ahrs(_ahrs), |
|
|
|
|
grid_cache(NULL), |
|
|
|
|
last_request_time_ms(0) |
|
|
|
|
{ |
|
|
|
|
AP_Param::setup_object_defaults(this, var_info); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#define ASSERT_RANGE(v,minv,maxv) assert((v)<=(maxv)&&(v)>=(minv)) |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
calculate bit number in grid_block bitmap. This corresponds to a |
|
|
|
|
bit representing a 4x4 mavlink transmitted block |
|
|
|
|
*/ |
|
|
|
|
uint8_t AP_Terrain::grid_bitnum(uint8_t idx_x, uint8_t idx_y) |
|
|
|
|
{
|
|
|
|
|
ASSERT_RANGE(idx_x,0,27); |
|
|
|
|
ASSERT_RANGE(idx_y,0,31); |
|
|
|
|
uint8_t subgrid_x = idx_x / TERRAIN_GRID_MAVLINK_SIZE; |
|
|
|
|
uint8_t subgrid_y = idx_y / TERRAIN_GRID_MAVLINK_SIZE; |
|
|
|
|
ASSERT_RANGE(subgrid_x,0,TERRAIN_GRID_BLOCK_MUL_X-1); |
|
|
|
|
ASSERT_RANGE(subgrid_y,0,TERRAIN_GRID_BLOCK_MUL_Y-1); |
|
|
|
|
return subgrid_y + TERRAIN_GRID_BLOCK_MUL_Y*subgrid_x; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
given a grid_info check that a given idx_x/idx_y is available (set |
|
|
|
|
in the bitmap) |
|
|
|
|
*/ |
|
|
|
|
bool AP_Terrain::check_bitmap(const struct grid_block &grid, uint8_t idx_x, uint8_t idx_y) |
|
|
|
|
{ |
|
|
|
|
uint8_t bitnum = grid_bitnum(idx_x, idx_y); |
|
|
|
|
return (grid.bitmap & (((uint64_t)1U)<<bitnum)) != 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
given a location, calculate the 45x45 grid SW corner, plus the |
|
|
|
|
grid index and grid square fraction |
|
|
|
|
given a location, calculate the 32x28 grid SW corner, plus the |
|
|
|
|
grid indices |
|
|
|
|
*/ |
|
|
|
|
void AP_Terrain::calculate_grid_info(const Location &loc, struct grid_info &info) const |
|
|
|
|
{ |
|
|
|
|
// grids start on integer degrees. This makes storing terrain data
|
|
|
|
|
// on the SD card a bit easier
|
|
|
|
|
info.lat_degrees = loc.lat / 10*1000*1000UL; |
|
|
|
|
info.lon_degrees = loc.lng / 10*1000*1000UL; |
|
|
|
|
info.lat_degrees = (loc.lat<0?(loc.lat-9999999L):loc.lat) / (10*1000*1000L); |
|
|
|
|
info.lon_degrees = (loc.lng<0?(loc.lng-9999999L):loc.lng) / (10*1000*1000L); |
|
|
|
|
|
|
|
|
|
// create reference position. Longitude scaling is taken from this point
|
|
|
|
|
// create reference position for this rounded degree position
|
|
|
|
|
Location ref; |
|
|
|
|
ref.lat = info.lat_degrees; |
|
|
|
|
ref.lng = info.lon_degrees; |
|
|
|
|
ref.lat = info.lat_degrees*10*1000*1000L; |
|
|
|
|
ref.lng = info.lon_degrees*10*1000*1000L; |
|
|
|
|
|
|
|
|
|
// find offset from reference
|
|
|
|
|
Vector2f offset = location_diff(ref, loc); |
|
|
|
|
|
|
|
|
|
// work out how many 45x45 grid squares we are in. x is north, y is east
|
|
|
|
|
info.idx_x = ((uint16_t)(offset.x / grid_spacing))/TERRAIN_GRID_BLOCK_SIZE; |
|
|
|
|
info.idx_y = ((uint16_t)(offset.y / grid_spacing))/TERRAIN_GRID_BLOCK_SIZE; |
|
|
|
|
// get indices in terms of grid_spacing elements
|
|
|
|
|
uint32_t idx_x = offset.x / grid_spacing; |
|
|
|
|
uint32_t idx_y = offset.y / grid_spacing; |
|
|
|
|
|
|
|
|
|
// find indexes into 32*28 grids for this degree reference. Note
|
|
|
|
|
// the use of TERRAIN_GRID_BLOCK_SPACING_{X,Y} which gives a one square
|
|
|
|
|
// overlap between grids
|
|
|
|
|
uint16_t grid_idx_x = idx_x / TERRAIN_GRID_BLOCK_SPACING_X; |
|
|
|
|
uint16_t grid_idx_y = idx_y / TERRAIN_GRID_BLOCK_SPACING_Y; |
|
|
|
|
|
|
|
|
|
// work out fractional (0 to 1) position within grid square.
|
|
|
|
|
info.frac_x = (offset.x - (info.idx_x * (float)TERRAIN_GRID_BLOCK_SIZE * grid_spacing)) / grid_spacing; |
|
|
|
|
info.frac_y = (offset.y - (info.idx_y * (float)TERRAIN_GRID_BLOCK_SIZE * grid_spacing)) / grid_spacing; |
|
|
|
|
// find the indices within the 32*28 grid
|
|
|
|
|
info.idx_x = idx_x % TERRAIN_GRID_BLOCK_SPACING_X; |
|
|
|
|
info.idx_y = idx_y % TERRAIN_GRID_BLOCK_SPACING_Y; |
|
|
|
|
|
|
|
|
|
// calculate lat/lon of SW corner of 45x45 grid_block
|
|
|
|
|
location_offset(ref, info.idx_x*grid_spacing, info.idx_y*grid_spacing); |
|
|
|
|
// find the fraction (0..1) within the square
|
|
|
|
|
info.frac_x = (offset.x - idx_x * grid_spacing) / grid_spacing; |
|
|
|
|
info.frac_y = (offset.y - idx_y * grid_spacing) / grid_spacing; |
|
|
|
|
|
|
|
|
|
// calculate lat/lon of SW corner of 32*28 grid_block
|
|
|
|
|
location_offset(ref,
|
|
|
|
|
grid_idx_x * TERRAIN_GRID_BLOCK_SPACING_X * (float)grid_spacing, |
|
|
|
|
grid_idx_y * TERRAIN_GRID_BLOCK_SPACING_Y * (float)grid_spacing); |
|
|
|
|
info.grid_lat = ref.lat; |
|
|
|
|
info.grid_lon = ref.lng; |
|
|
|
|
|
|
|
|
|
// calculate bit number in grid_block bitmap
|
|
|
|
|
info.bitnum = (info.idx_y/TERRAIN_GRID_MAVLINK_SIZE)*TERRAIN_GRID_BLOCK_MUL + info.idx_x/TERRAIN_GRID_MAVLINK_SIZE; |
|
|
|
|
ASSERT_RANGE(info.idx_x,0,TERRAIN_GRID_BLOCK_SPACING_X-1); |
|
|
|
|
ASSERT_RANGE(info.idx_y,0,TERRAIN_GRID_BLOCK_SPACING_Y-1); |
|
|
|
|
ASSERT_RANGE(info.frac_x,0,1); |
|
|
|
|
ASSERT_RANGE(info.frac_y,0,1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
given a location and offset, calculate the 45x45 grid SW corner, plus |
|
|
|
|
the grid index and grid square fraction
|
|
|
|
|
*/ |
|
|
|
|
void AP_Terrain::calculate_grid_info(const Location &loc, struct grid_info &info, int16_t ofs_north, int16_t ofs_east) const |
|
|
|
|
{ |
|
|
|
|
Location loc2 = loc; |
|
|
|
|
location_offset(loc2, ofs_north, ofs_east); |
|
|
|
|
calculate_grid_info(loc2, info); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
find a grid structure given a grid_info |
|
|
|
|
*/ |
|
|
|
|
AP_Terrain::grid_block &AP_Terrain::find_grid(const struct grid_info &info) const |
|
|
|
|
AP_Terrain::grid_cache &AP_Terrain::find_grid(const struct grid_info &info) |
|
|
|
|
{ |
|
|
|
|
uint16_t oldest_i = 0; |
|
|
|
|
|
|
|
|
|
// see if we have that grid
|
|
|
|
|
for (uint16_t i=0; i<TERRAIN_GRID_BLOCK_CACHE_SIZE; i++) { |
|
|
|
|
if (grid_cache[i].lat == info.grid_lat &&
|
|
|
|
|
grid_cache[i].lon == info.grid_lon) { |
|
|
|
|
grid_cache[i].last_access_ms = hal.scheduler->millis(); |
|
|
|
|
return &grid_cache[i]; |
|
|
|
|
if (cache[i].grid.lat == info.grid_lat &&
|
|
|
|
|
cache[i].grid.lon == info.grid_lon) { |
|
|
|
|
cache[i].last_access_ms = hal.scheduler->millis(); |
|
|
|
|
return cache[i]; |
|
|
|
|
} |
|
|
|
|
if (grid_cache[i].last_access_ms < grid_cache[oldest_i].last_access_ms) { |
|
|
|
|
if (cache[i].last_access_ms < cache[oldest_i].last_access_ms) { |
|
|
|
|
oldest_i = i; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Not found. Use the oldest grid and make it this grid,
|
|
|
|
|
// unpopulated
|
|
|
|
|
struct grid_block &grid = grid_cache[oldest_i]; |
|
|
|
|
// initially unpopulated
|
|
|
|
|
struct grid_cache &grid = cache[oldest_i]; |
|
|
|
|
memset(&grid, 0, sizeof(grid)); |
|
|
|
|
|
|
|
|
|
grid.lat = info.grid_lat; |
|
|
|
|
grid.lon = info.grid_lon; |
|
|
|
|
grid.spacing = grid_spacing; |
|
|
|
|
grid.grid.lat = info.grid_lat; |
|
|
|
|
grid.grid.lon = info.grid_lon; |
|
|
|
|
grid.grid.spacing = grid_spacing; |
|
|
|
|
grid.last_access_ms = hal.scheduler->millis(); |
|
|
|
|
|
|
|
|
|
return grid; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
return terrain height in meters above average sea level (WGS84) for |
|
|
|
|
a grid_info, returning the height for the SW corner of the grid square |
|
|
|
|
*/ |
|
|
|
|
bool AP_Terrain::height_sw_corner(const struct grid_info &info, int16_t &height) |
|
|
|
|
{ |
|
|
|
|
struct grid_block &grid = find_grid(info); |
|
|
|
|
if (grid.bitmask[info.bitnum/8] & (1U<<(info.bitnum%8))) { |
|
|
|
|
// we have the height
|
|
|
|
|
height = grid.height[info.idx_x][info.idx_y]; |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
return terrain height in meters above average sea level (WGS84) for |
|
|
|
|
a given position |
|
|
|
@ -153,64 +173,153 @@ bool AP_Terrain::height_amsl(const Location &loc, float &height)
@@ -153,64 +173,153 @@ bool AP_Terrain::height_amsl(const Location &loc, float &height)
|
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
struct grid_info info00, info01, info10, info11; |
|
|
|
|
struct grid_info info; |
|
|
|
|
|
|
|
|
|
// we push the spacing up a bit to cope with changes in longitude
|
|
|
|
|
// scaling between grids
|
|
|
|
|
uint16_t spacing2 = spacing*1.2f; |
|
|
|
|
calculate_grid_info(loc, info00); |
|
|
|
|
calculate_grid_info(loc, info01, 0, spacing2); |
|
|
|
|
calculate_grid_info(loc, info10, spacing2, 0); |
|
|
|
|
calculate_grid_info(loc, info11, spacing2, spacing2); |
|
|
|
|
calculate_grid_info(loc, info); |
|
|
|
|
|
|
|
|
|
// find the grid
|
|
|
|
|
const struct grid_block &grid = find_grid(info).grid; |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
note that we rely on the one square overlap to ensure these |
|
|
|
|
calculations don't go past the end of the arrays |
|
|
|
|
*/ |
|
|
|
|
ASSERT_RANGE(info.idx_x, 0, TERRAIN_GRID_BLOCK_SIZE_X-2); |
|
|
|
|
ASSERT_RANGE(info.idx_y, 0, TERRAIN_GRID_BLOCK_SIZE_Y-2); |
|
|
|
|
|
|
|
|
|
// hXY are the heights of the 4 surrounding grid points
|
|
|
|
|
int16_t h00, h01, h10, h11; |
|
|
|
|
|
|
|
|
|
if (!height_sw_corner(info00, h00) || |
|
|
|
|
!height_sw_corner(info01, h01) || |
|
|
|
|
!height_sw_corner(info10, h10) || |
|
|
|
|
!height_sw_corner(info11, h11)) { |
|
|
|
|
// we don't have the data on all sided
|
|
|
|
|
// check we have all 4 required heights
|
|
|
|
|
if (!check_bitmap(grid, info.idx_x, info.idx_y) || |
|
|
|
|
!check_bitmap(grid, info.idx_x, info.idx_y+1) || |
|
|
|
|
!check_bitmap(grid, info.idx_x+1, info.idx_y) || |
|
|
|
|
!check_bitmap(grid, info.idx_x+1, info.idx_y+1)) { |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// TODO: cope with crossing degree boundaries
|
|
|
|
|
// hXY are the heights of the 4 surrounding grid points
|
|
|
|
|
int16_t h00, h01, h10, h11; |
|
|
|
|
|
|
|
|
|
float avg1 = (1.0f-info00.frac_x) * h00 + info00.frac_x * h10; |
|
|
|
|
float avg2 = (1.0f-info00.frac_x) * h01 + info00.frac_x * h11; |
|
|
|
|
float avg = (1.0f-info00.frac_y) * avg1 + info00.frac_y * avg2; |
|
|
|
|
h00 = grid.height[info.idx_x+0][info.idx_y+0]; |
|
|
|
|
h01 = grid.height[info.idx_x+0][info.idx_y+1]; |
|
|
|
|
h10 = grid.height[info.idx_x+1][info.idx_y+0]; |
|
|
|
|
h11 = grid.height[info.idx_x+1][info.idx_y+1]; |
|
|
|
|
|
|
|
|
|
float avg1 = (1.0f-info.frac_x) * h00 + info.frac_x * h10; |
|
|
|
|
float avg2 = (1.0f-info.frac_x) * h01 + info.frac_x * h11; |
|
|
|
|
float avg = (1.0f-info.frac_y) * avg1 + info.frac_y * avg2; |
|
|
|
|
|
|
|
|
|
height = avg; |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
request any missing 4x4 grids from a block |
|
|
|
|
*/ |
|
|
|
|
bool AP_Terrain::request_missing(mavlink_channel_t chan, const struct grid_info &info) |
|
|
|
|
{ |
|
|
|
|
// find the grid
|
|
|
|
|
struct grid_block &grid = find_grid(info).grid; |
|
|
|
|
|
|
|
|
|
// see if it is fully populated
|
|
|
|
|
const uint64_t mask = (((uint64_t)1U)<<(TERRAIN_GRID_BLOCK_MUL_X*TERRAIN_GRID_BLOCK_MUL_Y)) - 1; |
|
|
|
|
if ((grid.bitmap & mask) == mask) { |
|
|
|
|
// it is fully populated, nothing to do
|
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
ask the GCS to send a set of 4x4 grids |
|
|
|
|
*/ |
|
|
|
|
mavlink_msg_terrain_request_send(chan, grid.lat, grid.lon, grid_spacing, mask & ~grid.bitmap); |
|
|
|
|
last_request_time_ms = hal.scheduler->millis(); |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
update terrain data. Check if we need to request more grids. This |
|
|
|
|
should be called at 1Hz |
|
|
|
|
send any pending terrain request to the GCS |
|
|
|
|
*/ |
|
|
|
|
void AP_Terrain::update(void) |
|
|
|
|
void AP_Terrain::send_request(mavlink_channel_t chan) |
|
|
|
|
{ |
|
|
|
|
if (enable == 0) { |
|
|
|
|
// not enabled
|
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// did we request recently?
|
|
|
|
|
if (hal.scheduler->millis() - last_request_time_ms < 2000) { |
|
|
|
|
// too soon to request again
|
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Location loc; |
|
|
|
|
if (!ahrs.get_position(loc)) { |
|
|
|
|
// we don't know where we are
|
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// find any missing 5x5 blocks in the current grid
|
|
|
|
|
// request any missing 4x4 blocks in the current grid
|
|
|
|
|
struct grid_info info; |
|
|
|
|
calculate_grid_info(loc, info); |
|
|
|
|
|
|
|
|
|
if (request_missing(info)) { |
|
|
|
|
if (request_missing(chan, info)) { |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void AP_Terrain::request_missing(struct grid_info &info) |
|
|
|
|
/*
|
|
|
|
|
handle terrain data from GCS |
|
|
|
|
*/ |
|
|
|
|
void AP_Terrain::handle_data(mavlink_message_t *msg) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
mavlink_terrain_data_t packet; |
|
|
|
|
mavlink_msg_terrain_data_decode(msg, &packet); |
|
|
|
|
|
|
|
|
|
uint16_t i; |
|
|
|
|
for (i=0; i<TERRAIN_GRID_BLOCK_CACHE_SIZE; i++) { |
|
|
|
|
if (cache[i].grid.lat == packet.lat &&
|
|
|
|
|
cache[i].grid.lon == packet.lon &&
|
|
|
|
|
cache[i].grid.spacing == packet.grid_spacing && |
|
|
|
|
packet.gridbit < 56) { |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (i == TERRAIN_GRID_BLOCK_CACHE_SIZE) { |
|
|
|
|
// we don't have that grid, ignore data
|
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
struct grid_cache &gcache = cache[i]; |
|
|
|
|
struct grid_block &grid = gcache.grid; |
|
|
|
|
uint8_t idx_x = (packet.gridbit / TERRAIN_GRID_BLOCK_MUL_Y) * TERRAIN_GRID_MAVLINK_SIZE; |
|
|
|
|
uint8_t idx_y = (packet.gridbit % TERRAIN_GRID_BLOCK_MUL_Y) * TERRAIN_GRID_MAVLINK_SIZE; |
|
|
|
|
ASSERT_RANGE(idx_x,0,(TERRAIN_GRID_BLOCK_MUL_X-1)*TERRAIN_GRID_MAVLINK_SIZE); |
|
|
|
|
ASSERT_RANGE(idx_y,0,(TERRAIN_GRID_BLOCK_MUL_Y-1)*TERRAIN_GRID_MAVLINK_SIZE); |
|
|
|
|
for (uint8_t x=0; x<TERRAIN_GRID_MAVLINK_SIZE; x++) { |
|
|
|
|
for (uint8_t y=0; y<TERRAIN_GRID_MAVLINK_SIZE; y++) { |
|
|
|
|
grid.height[idx_x+x][idx_y+y] = packet.data[x*TERRAIN_GRID_MAVLINK_SIZE+y]; |
|
|
|
|
ASSERT_RANGE(grid.height[idx_x+x][idx_y+y], 1, 20000); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
hal.console->printf("Filled bit %u idx_x=%u idx_y=%u\n",
|
|
|
|
|
(unsigned)packet.gridbit, (unsigned)idx_x, (unsigned)idx_y); |
|
|
|
|
gcache.grid.bitmap |= ((uint64_t)1) << packet.gridbit; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
update terrain data. Check if we need to request more grids. This |
|
|
|
|
should be called at 1Hz |
|
|
|
|
*/ |
|
|
|
|
void AP_Terrain::update(void) |
|
|
|
|
{ |
|
|
|
|
float height; |
|
|
|
|
Location loc; |
|
|
|
|
if (!ahrs.get_position(loc)) { |
|
|
|
|
// we don't know where we are
|
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
if (height_amsl(loc, height)) { |
|
|
|
|
printf("height %.2f\n", height); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif // HAVE_AP_TERRAIN
|
|
|
|
|