Browse Source

AC_WPNav: Leonard's ff loiter and 3d wp nav

mission-4.1.18
Randy Mackay 12 years ago
parent
commit
0ccdce1b22
  1. 116
      libraries/AC_WPNav/AC_WPNav.cpp
  2. 12
      libraries/AC_WPNav/AC_WPNav.h

116
libraries/AC_WPNav/AC_WPNav.cpp

@ -27,6 +27,7 @@ AC_WPNav::AC_WPNav(AP_InertialNav* inav, APM_PI* pid_pos_lat, APM_PI* pid_pos_lo
_pid_pos_lon(pid_pos_lon), _pid_pos_lon(pid_pos_lon),
_pid_rate_lat(pid_rate_lat), _pid_rate_lat(pid_rate_lat),
_pid_rate_lon(pid_rate_lon), _pid_rate_lon(pid_rate_lon),
_speedz_cms(MAX_CLIMB_VELOCITY),
_lean_angle_max(MAX_LEAN_ANGLE) _lean_angle_max(MAX_LEAN_ANGLE)
{ {
AP_Param::setup_object_defaults(this, var_info); AP_Param::setup_object_defaults(this, var_info);
@ -166,8 +167,12 @@ void AC_WPNav::set_origin_and_destination(const Vector3f& origin, const Vector3f
{ {
_origin = origin; _origin = origin;
_destination = destination; _destination = destination;
_pos_delta = _destination - _origin; _pos_delta_unit = _destination - _origin;
_track_length = safe_sqrt(_pos_delta.x * _pos_delta.x + _pos_delta.y * _pos_delta.y); _track_length = _pos_delta_unit.length();
_pos_delta_unit = _pos_delta_unit/_track_length;
_hoz_track_ratio = _track_length / sqrt(_pos_delta_unit.x*_pos_delta_unit.x + _pos_delta_unit.y*_pos_delta_unit.y);
_vert_track_ratio = _track_length / _pos_delta_unit.z;
_track_desired = 0; _track_desired = 0;
} }
@ -177,44 +182,27 @@ void AC_WPNav::advance_target_along_track(float velocity_cms, float dt)
float cross_track_dist; float cross_track_dist;
float track_covered; float track_covered;
float track_desired_max; float track_desired_max;
float line_a, line_b, line_c, line_m; float alt_error;
// get current location // get current location
Vector3f curr = _inav->get_position(); Vector3f curr = _inav->get_position();
// limit velocity to maximum possible
velocity_cms = min(velocity_cms, _speed_cms) * _hoz_track_ratio;
velocity_cms = min(velocity_cms, _speedz_cms * _vert_track_ratio);
// check for zero length segment // check for zero length segment
if( _pos_delta.x == 0 && _pos_delta.y == 0) { if( _pos_delta_unit.x == 0 && _pos_delta_unit.y == 0 ) {
_target = _destination; _target = _destination;
return; return;
} }
if( _pos_delta.x == 0 ) { track_covered = (curr.x-_origin.x) * _pos_delta_unit.x + (curr.y-_origin.y) * _pos_delta_unit.y + (curr.z-_origin.z) * _pos_delta_unit.z;
// x is zero cross_track_dist = -(curr.x-_origin.x) * _pos_delta_unit.y + (curr.y-_origin.y) * _pos_delta_unit.x;
cross_track_dist = fabsf(curr.x - _destination.x); alt_error = fabsf(_origin.z + _pos_delta_unit.z * track_covered - curr.z);
track_covered = fabsf(curr.y - _origin.y);
}else if(_pos_delta.y == 0) {
// y is zero
cross_track_dist = fabsf(curr.y - _destination.y);
track_covered = fabsf(curr.x - _origin.x);
}else{
// both x and y non zero
line_a = _pos_delta.y;
line_b = -_pos_delta.x;
line_c = _pos_delta.x * _origin.y - _pos_delta.y * _origin.x;
line_m = line_a / line_b;
cross_track_dist = fabsf(line_a * curr.x + line_b * curr.y + line_c ) / _track_length;
line_m = 1/line_m;
line_a = line_m;
line_b = -1;
line_c = curr.y - line_m * curr.x;
// calculate the distance to the closest point along the track and it's distance from the origin
track_covered = fabsf(line_a*_origin.x + line_b*_origin.y + line_c) / safe_sqrt(line_a*line_a+line_b*line_b);
}
// maximum distance along the track that we will allow (stops target point from getting too far from the current position) // maximum distance along the track that we will allow (stops target point from getting too far from the current position)
track_desired_max = track_covered + safe_sqrt(WPINAV_MAX_POS_ERROR*WPINAV_MAX_POS_ERROR-cross_track_dist*cross_track_dist); track_desired_max = track_covered + min( safe_sqrt(WPINAV_MAX_POS_ERROR*WPINAV_MAX_POS_ERROR - cross_track_dist*cross_track_dist) * _hoz_track_ratio, (750-alt_error) * _vert_track_ratio);
// advance the current target // advance the current target
_track_desired += velocity_cms * dt; _track_desired += velocity_cms * dt;
@ -228,10 +216,9 @@ void AC_WPNav::advance_target_along_track(float velocity_cms, float dt)
} }
// recalculate the desired position // recalculate the desired position
float track_length_pct = _track_desired/_track_length; _target.x = _origin.x + _pos_delta_unit.x * _track_desired;
_target.x = _origin.x + _pos_delta.x * track_length_pct; _target.y = _origin.y + _pos_delta_unit.y * _track_desired;
_target.y = _origin.y + _pos_delta.y * track_length_pct; _target.z = _origin.z + _pos_delta_unit.z * _track_desired;
_target.z = _destination.z;
} }
/// get_distance_to_destination - get horizontal distance to destination in cm /// get_distance_to_destination - get horizontal distance to destination in cm
@ -317,44 +304,44 @@ void AC_WPNav::get_loiter_pos_lat_lon(int32_t target_lat_from_home, int32_t targ
// get_loiter_vel_lat_lon - loiter velocity controller // get_loiter_vel_lat_lon - loiter velocity controller
// converts desired velocities in lat/lon frame to accelerations in lat/lon frame // converts desired velocities in lat/lon frame to accelerations in lat/lon frame
void AC_WPNav::get_loiter_vel_lat_lon(int16_t vel_lat, int16_t vel_lon, float dt) void AC_WPNav::get_loiter_vel_lat_lon(float vel_lat, float vel_lon, float dt)
{ {
float speed_error_lat = 0; // The velocity in cm/s. Vector3f vel_curr = _inav->get_velocity(); // current velocity in cm/s
float speed_error_lon = 0; // The velocity in cm/s. Vector3f vel_error; // The velocity error in cm/s.
Vector2f desired_accel; // the resulting desired acceleration
float speed_lat = _inav->get_latitude_velocity(); float accel_total; // total acceleration in cm/s/s
float speed_lon = _inav->get_longitude_velocity();
// reset last velocity if this controller has just been engaged or dt is zero
int32_t accel_lat; if( dt == 0.0 ) {
int32_t accel_lon; desired_accel.x = 0;
int32_t accel_total; desired_accel.y = 0;
} else {
int16_t lat_p,lat_i,lat_d; // feed forward desired acceleration calculation
int16_t lon_p,lon_i,lon_d; desired_accel.x = (vel_lat - _vel_last.x)/dt;
desired_accel.y = (vel_lon - _vel_last.y)/dt;
// calculate vel error }
speed_error_lat = vel_lat - speed_lat;
speed_error_lon = vel_lon - speed_lon;
lat_p = _pid_rate_lat->get_p(speed_error_lat);
lat_i = _pid_rate_lat->get_i(speed_error_lat, dt);
lat_d = _pid_rate_lat->get_d(speed_error_lat, dt);
lon_p = _pid_rate_lon->get_p(speed_error_lon); // store this iteration's velocities for the next iteration
lon_i = _pid_rate_lon->get_i(speed_error_lon, dt); _vel_last.x = vel_lat;
lon_d = _pid_rate_lon->get_d(speed_error_lon, dt); _vel_last.y = vel_lon;
accel_lat = (lat_p+lat_i+lat_d); // calculate velocity error
accel_lon = (lon_p+lon_i+lon_d); vel_error.x = vel_lat - vel_curr.x;
vel_error.y = vel_lon - vel_curr.y;
accel_total = safe_sqrt(accel_lat*accel_lat + accel_lon*accel_lon); // combine feed foward accel with PID outpu from velocity error
desired_accel.x += _pid_rate_lat->get_pid(vel_error.x, dt);
desired_accel.y += _pid_rate_lon->get_pid(vel_error.y, dt);
// scale desired acceleration if it's beyond acceptable limit
accel_total = safe_sqrt(desired_accel.x*desired_accel.x + desired_accel.y*desired_accel.y);
if( accel_total > MAX_LOITER_VEL_ACCEL ) { if( accel_total > MAX_LOITER_VEL_ACCEL ) {
accel_lat = MAX_LOITER_VEL_ACCEL * accel_lat/accel_total; desired_accel.x = MAX_LOITER_VEL_ACCEL * desired_accel.x/accel_total;
accel_lon = MAX_LOITER_VEL_ACCEL * accel_lon/accel_total; desired_accel.y = MAX_LOITER_VEL_ACCEL * desired_accel.y/accel_total;
} }
get_loiter_accel_lat_lon(accel_lat, accel_lon); // call accel based controller with desired acceleration
get_loiter_accel_lat_lon(desired_accel.x, desired_accel.y);
} }
// get_loiter_accel_lat_lon - loiter acceration controller // get_loiter_accel_lat_lon - loiter acceration controller
@ -394,4 +381,7 @@ void AC_WPNav::reset_I()
_pid_pos_lat->reset_I(); _pid_pos_lat->reset_I();
_pid_rate_lon->reset_I(); _pid_rate_lon->reset_I();
_pid_rate_lat->reset_I(); _pid_rate_lat->reset_I();
// set last velocity to current velocity
_vel_last = _inav->get_velocity();
} }

12
libraries/AC_WPNav/AC_WPNav.h

@ -21,6 +21,7 @@
#define WPINAV_MAX_POS_ERROR 2000.0f // maximum distance (in cm) that the desired track can stray from our current location. #define WPINAV_MAX_POS_ERROR 2000.0f // maximum distance (in cm) that the desired track can stray from our current location.
#define WP_SPEED 500 // default horizontal speed betwen waypoints in cm/s #define WP_SPEED 500 // default horizontal speed betwen waypoints in cm/s
#define MAX_LEAN_ANGLE 4500 // default maximum lean angle #define MAX_LEAN_ANGLE 4500 // default maximum lean angle
#define MAX_CLIMB_VELOCITY 125 // maximum climb velocity - ToDo: pull this in from main code
class AC_WPNav class AC_WPNav
{ {
@ -112,6 +113,9 @@ public:
_cos_roll = cos_roll; _cos_roll = cos_roll;
} }
/// set_climb_velocity - allows main code to pass max climb velocity to wp navigation
void set_climb_velocity(float velocity_cms) { _speedz_cms = velocity_cms; };
static const struct AP_Param::GroupInfo var_info[]; static const struct AP_Param::GroupInfo var_info[];
protected: protected:
@ -125,7 +129,7 @@ protected:
/// get_loiter_vel_lat_lon - loiter velocity controller /// get_loiter_vel_lat_lon - loiter velocity controller
/// converts desired velocities in lat/lon frame to accelerations in lat/lon frame /// converts desired velocities in lat/lon frame to accelerations in lat/lon frame
void get_loiter_vel_lat_lon(int16_t vel_lat, int16_t vel_lon, float dt); void get_loiter_vel_lat_lon(float vel_lat, float vel_lon, float dt);
/// get_loiter_accel_lat_lon - loiter acceration controller /// get_loiter_accel_lat_lon - loiter acceration controller
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles /// converts desired accelerations provided in lat/lon frame to roll/pitch angles
@ -148,6 +152,7 @@ protected:
// parameters // parameters
AP_Float _speed_cms; // default horizontal speed in cm/s AP_Float _speed_cms; // default horizontal speed in cm/s
float _speedz_cms; // max vertical climb rate in cm/s. To-Do: rename or pull this from main code
uint32_t _last_update; // time of last update call uint32_t _last_update; // time of last update call
float _cos_yaw; // short-cut to save on calcs required to convert roll-pitch frame to lat-lon frame float _cos_yaw; // short-cut to save on calcs required to convert roll-pitch frame to lat-lon frame
float _sin_yaw; float _sin_yaw;
@ -163,12 +168,15 @@ protected:
// internal variables // internal variables
Vector3f _target; // loiter's target location in cm from home Vector3f _target; // loiter's target location in cm from home
Vector3f _target_vel; // loiter Vector3f _target_vel; // loiter
Vector3f _vel_last; // previous iterations velocity in cm/s
Vector3f _origin; // starting point of trip to next waypoint in cm from home (equivalent to next_WP) Vector3f _origin; // starting point of trip to next waypoint in cm from home (equivalent to next_WP)
Vector3f _destination; // target destination in cm from home (equivalent to next_WP) Vector3f _destination; // target destination in cm from home (equivalent to next_WP)
Vector3f _pos_delta; // position difference between origin and destination Vector3f _pos_delta_unit; // position difference between origin and destination
float _track_length; // distance in cm between origin and destination float _track_length; // distance in cm between origin and destination
float _track_desired; // our desired distance along the track in cm float _track_desired; // our desired distance along the track in cm
float _distance_to_target; // distance to loiter target float _distance_to_target; // distance to loiter target
float _hoz_track_ratio; // horizontal component of track to next waypoint
float _vert_track_ratio; // vertical component of track to next waypoint
// pilot inputs for loiter // pilot inputs for loiter
int16_t _pilot_vel_forward_cms; int16_t _pilot_vel_forward_cms;

Loading…
Cancel
Save