|
|
|
@ -15,38 +15,41 @@ void ModeSteering::update()
@@ -15,38 +15,41 @@ void ModeSteering::update()
|
|
|
|
|
float desired_steering, desired_speed; |
|
|
|
|
get_pilot_desired_steering_and_speed(desired_steering, desired_speed); |
|
|
|
|
|
|
|
|
|
bool reversed = is_negative(desired_speed); |
|
|
|
|
|
|
|
|
|
// determine if pilot is requesting pivot turn
|
|
|
|
|
bool is_pivot_turning = g2.motors.have_skid_steering() && is_zero(desired_speed) && (!is_zero(desired_steering)); |
|
|
|
|
|
|
|
|
|
// In steering mode we control lateral acceleration directly.
|
|
|
|
|
// For pivot steering vehicles we use the TURN_MAX_G parameter
|
|
|
|
|
// For regular steering vehicles we use the maximum lateral acceleration at full steering lock for this speed: V^2/R where R is the radius of turn.
|
|
|
|
|
float max_g_force; |
|
|
|
|
if (is_pivot_turning) { |
|
|
|
|
max_g_force = g.turn_max_g * GRAVITY_MSS; |
|
|
|
|
if (g2.motors.have_skid_steering() && is_zero(desired_speed)) { |
|
|
|
|
// pivot turning using turn rate controller
|
|
|
|
|
// convert pilot steering input to desired turn rate in radians/sec
|
|
|
|
|
const float target_turn_rate = (desired_steering / 4500.0f) * radians(g2.acro_turn_rate); |
|
|
|
|
|
|
|
|
|
// run steering turn rate controller and throttle controller
|
|
|
|
|
const float steering_out = attitude_control.get_steering_out_rate(target_turn_rate, |
|
|
|
|
g2.motors.limit.steer_left, |
|
|
|
|
g2.motors.limit.steer_right); |
|
|
|
|
g2.motors.set_steering(steering_out * 4500.0f); |
|
|
|
|
} else { |
|
|
|
|
max_g_force = speed * speed / MAX(g2.turn_radius, 0.1f); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// constrain to user set TURN_MAX_G
|
|
|
|
|
max_g_force = constrain_float(max_g_force, 0.1f, g.turn_max_g * GRAVITY_MSS); |
|
|
|
|
|
|
|
|
|
// convert pilot steering input to desired lateral acceleration
|
|
|
|
|
float desired_lat_accel = max_g_force * (desired_steering / 4500.0f); |
|
|
|
|
|
|
|
|
|
// reverse target lateral acceleration if backing up
|
|
|
|
|
bool reversed = false; |
|
|
|
|
if (is_negative(desired_speed)) { |
|
|
|
|
reversed = true; |
|
|
|
|
desired_lat_accel = -desired_lat_accel; |
|
|
|
|
// In steering mode we control lateral acceleration directly.
|
|
|
|
|
// For regular steering vehicles we use the maximum lateral acceleration
|
|
|
|
|
// at full steering lock for this speed: V^2/R where R is the radius of turn.
|
|
|
|
|
float max_g_force = speed * speed / MAX(g2.turn_radius, 0.1f); |
|
|
|
|
max_g_force = constrain_float(max_g_force, 0.1f, g.turn_max_g * GRAVITY_MSS); |
|
|
|
|
|
|
|
|
|
// convert pilot steering input to desired lateral acceleration
|
|
|
|
|
float desired_lat_accel = max_g_force * (desired_steering / 4500.0f); |
|
|
|
|
|
|
|
|
|
// reverse target lateral acceleration if backing up
|
|
|
|
|
if (reversed) { |
|
|
|
|
desired_lat_accel = -desired_lat_accel; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// run lateral acceleration to steering controller
|
|
|
|
|
calc_steering_from_lateral_acceleration(desired_lat_accel, reversed); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// mark us as in_reverse when using a negative throttle
|
|
|
|
|
rover.set_reverse(reversed); |
|
|
|
|
|
|
|
|
|
// run lateral acceleration to steering controller
|
|
|
|
|
calc_steering_from_lateral_acceleration(desired_lat_accel, reversed); |
|
|
|
|
|
|
|
|
|
// run speed to throttle controller
|
|
|
|
|
calc_throttle(desired_speed, false, true); |
|
|
|
|
} |
|
|
|
|