Browse Source

Copter: integrate AC_WPNav

mission-4.1.18
Randy Mackay 12 years ago
parent
commit
49828eba7d
  1. 47
      ArduCopter/ArduCopter.pde
  2. 16
      ArduCopter/Attitude.pde
  3. 28
      ArduCopter/commands_logic.pde
  4. 329
      ArduCopter/navigation.pde
  5. 30
      ArduCopter/position_vector.pde
  6. 3
      ArduCopter/system.pde

47
ArduCopter/ArduCopter.pde

@ -97,6 +97,7 @@ @@ -97,6 +97,7 @@
#include <AP_Mount.h> // Camera/Antenna mount
#include <AP_Airspeed.h> // needed for AHRS build
#include <AP_InertialNav.h> // ArduPilot Mega inertial navigation library
#include <AC_WPNav.h> // ArduCopter waypoint navigation library
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
#include <AP_Limits.h>
#include <memcheck.h> // memory limit checker
@ -572,7 +573,7 @@ LowPassFilterFloat rate_pitch_filter; // Rate Pitch filter @@ -572,7 +573,7 @@ LowPassFilterFloat rate_pitch_filter; // Rate Pitch filter
////////////////////////////////////////////////////////////////////////////////
// used to control the speed of Circle mode in radians/second, default is 5° per second
static const float circle_rate = 0.0872664625;
Vector2f circle_center; // circle position expressed in cm from home location. x = lat, y = lon
Vector3f circle_center; // circle position expressed in cm from home location. x = lat, y = lon
// angle from the circle center to the copter's desired location. Incremented at circle_rate / second
static float circle_angle;
// the total angle (in radians) travelled
@ -583,11 +584,6 @@ static uint8_t circle_desired_rotations; @@ -583,11 +584,6 @@ static uint8_t circle_desired_rotations;
static uint16_t loiter_time_max;
// How long have we been loitering - The start time in millis
static uint32_t loiter_time;
// The synthetic location created to make the copter do circles around a WP
static struct Location circle_WP;
// inertial nav loiter variables
static float loiter_lat_from_home_cm; // loiter's target latitude in cm from home
static float loiter_lon_from_home_cm; // loiter's target longitude in cm from home
////////////////////////////////////////////////////////////////////////////////
@ -660,13 +656,6 @@ static int32_t home_distance; @@ -660,13 +656,6 @@ static int32_t home_distance;
// distance between plane and next_WP in cm
// is not static because AP_Camera uses it
uint32_t wp_distance;
// wpinav variables
Vector2f wpinav_origin; // starting point of trip to next waypoint in cm from home (equivalent to next_WP)
Vector2f wpinav_destination; // target destination in cm from home (equivalent to next_WP)
Vector2f wpinav_target; // the intermediate target location in cm from home
Vector2f wpinav_pos_delta; // position difference between origin and destination
float wpinav_track_length; // distance in cm between origin and destination
float wpinav_track_desired; // the desired distance along the track in cm
////////////////////////////////////////////////////////////////////////////////
@ -705,14 +694,7 @@ static int32_t original_wp_bearing; @@ -705,14 +694,7 @@ static int32_t original_wp_bearing;
static int32_t nav_roll;
// The Commanded pitch from the autopilot. negative Pitch means go forward.
static int32_t nav_pitch;
// The desired bank towards North (Positive) or South (Negative)
static int32_t auto_roll;
static int32_t auto_pitch;
// Don't be fooled by the fact that Pitch is reversed from Roll in its sign!
static int16_t nav_lat;
// The desired bank towards East (Positive) or West (Negative)
static int16_t nav_lon;
// The Commanded ROll from the autopilot based on optical flow sensor.
static int32_t of_roll;
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward.
@ -742,7 +724,7 @@ static int8_t alt_change_flag; @@ -742,7 +724,7 @@ static int8_t alt_change_flag;
static int32_t nav_yaw;
static uint8_t yaw_timer;
// Yaw will point at this location if yaw_mode is set to YAW_LOOK_AT_LOCATION
static struct Location yaw_look_at_WP;
static Vector3f yaw_look_at_WP;
// bearing from current location to the yaw_look_at_WP
static int32_t yaw_look_at_WP_bearing;
// yaw used for YAW_LOOK_AT_HEADING yaw_mode
@ -787,6 +769,12 @@ static float G_Dt = 0.02; @@ -787,6 +769,12 @@ static float G_Dt = 0.02;
////////////////////////////////////////////////////////////////////////////////
AP_InertialNav inertial_nav(&ahrs, &ins, &barometer, &g_gps);
////////////////////////////////////////////////////////////////////////////////
// Waypoint navigation object
// To-Do: move inertial nav up or other navigation variables down here
////////////////////////////////////////////////////////////////////////////////
AC_WPNav wp_nav(&inertial_nav, &g.pi_loiter_lat, &g.pi_loiter_lon, &g.pid_loiter_rate_lat, &g.pid_loiter_rate_lon);
////////////////////////////////////////////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////////////////////////////////////////////
@ -1454,7 +1442,7 @@ bool set_yaw_mode(uint8_t new_yaw_mode) @@ -1454,7 +1442,7 @@ bool set_yaw_mode(uint8_t new_yaw_mode)
case YAW_LOOK_AT_LOCATION:
if( ap.home_is_set ) {
// update bearing - assumes yaw_look_at_WP has been intialised before set_yaw_mode was called
yaw_look_at_WP_bearing = get_bearing_cd(&current_loc, &yaw_look_at_WP);
yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), yaw_look_at_WP);
yaw_initialised = true;
}
break;
@ -1654,8 +1642,8 @@ void update_roll_pitch_mode(void) @@ -1654,8 +1642,8 @@ void update_roll_pitch_mode(void)
control_pitch = g.rc_2.control_in;
// copy latest output from nav controller to stabilize controller
nav_roll += constrain_int32(wrap_180_cd(auto_roll - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
nav_pitch += constrain_int32(wrap_180_cd(auto_pitch - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
nav_roll += constrain_int32(wrap_180_cd(wp_nav.get_desired_roll() - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
nav_pitch += constrain_int32(wrap_180_cd(wp_nav.get_desired_pitch() - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
get_stabilize_roll(nav_roll);
get_stabilize_pitch(nav_pitch);
@ -1695,12 +1683,12 @@ void update_roll_pitch_mode(void) @@ -1695,12 +1683,12 @@ void update_roll_pitch_mode(void)
// update loiter target from user controls - max velocity is 5.0 m/s
if( control_roll != 0 || control_pitch != 0 ) {
loiter_set_pos_from_velocity(-control_pitch/(2*4.5), control_roll/(2*4.5),0.01f);
wp_nav.move_loiter_target(-control_pitch/(2*4.5), control_roll/(2*4.5),0.01f);
}
// copy latest output from nav controller to stabilize controller
nav_roll += constrain_int32(wrap_180_cd(auto_roll - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
nav_pitch += constrain_int32(wrap_180_cd(auto_pitch - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
nav_roll += constrain_int32(wrap_180_cd(wp_nav.get_desired_roll() - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
nav_pitch += constrain_int32(wrap_180_cd(wp_nav.get_desired_pitch() - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
get_stabilize_roll(nav_roll);
get_stabilize_pitch(nav_pitch);
break;
@ -2032,6 +2020,9 @@ static void update_trig(void){ @@ -2032,6 +2020,9 @@ static void update_trig(void){
sin_pitch = -temp.c.x;
sin_roll = temp.c.y / cos_pitch_x;
// update wp_nav controller with trig values
wp_nav.set_cos_sin_yaw(cos_yaw, sin_yaw, cos_roll_x);
//flat:
// 0 ° = cos_yaw: 1.00, sin_yaw: 0.00,
// 90° = cos_yaw: 0.00, sin_yaw: 1.00,

16
ArduCopter/Attitude.pde

@ -1179,7 +1179,6 @@ static void reset_I_all(void) @@ -1179,7 +1179,6 @@ static void reset_I_all(void)
{
reset_rate_I();
reset_stability_I();
reset_wind_I();
reset_throttle_I();
reset_optflow_I();
@ -1202,21 +1201,6 @@ static void reset_optflow_I(void) @@ -1202,21 +1201,6 @@ static void reset_optflow_I(void)
of_pitch = 0;
}
static void reset_wind_I(void)
{
// Wind Compensation
// this i is not currently being used, but we reset it anyway
// because someone may modify it and not realize it, causing a bug
g.pi_loiter_lat.reset_I();
g.pi_loiter_lon.reset_I();
g.pid_loiter_rate_lat.reset_I();
g.pid_loiter_rate_lon.reset_I();
g.pid_nav_lat.reset_I();
g.pid_nav_lon.reset_I();
}
static void reset_throttle_I(void)
{
// For Altitude Hold

28
ArduCopter/commands_logic.pde

@ -273,8 +273,8 @@ static void do_nav_wp() @@ -273,8 +273,8 @@ static void do_nav_wp()
// set nav mode
set_nav_mode(NAV_WP);
// Set inav navigation target
wpinav_set_destination(command_nav_queue);
// Set wp navigation target
wp_nav.set_destination(pv_location_to_vector(command_nav_queue));
// this is our bitmask to verify we have met all conditions to move on
wp_verify_byte = 0;
@ -340,7 +340,7 @@ static void do_loiter_unlimited() @@ -340,7 +340,7 @@ static void do_loiter_unlimited()
// location specified so fly to the target location
set_nav_mode(NAV_WP);
// Set inav navigation target
wpinav_set_destination(command_nav_queue);
wp_nav.set_destination(pv_location_to_vector(command_nav_queue));
}
}
@ -364,12 +364,11 @@ static void do_circle() @@ -364,12 +364,11 @@ static void do_circle()
// override default horizontal location target
if( command_nav_queue.lat != 0 || command_nav_queue.lng != 0) {
circle_set_center(pv_latlon_to_vector(command_nav_queue.lat, command_nav_queue.lng), ahrs.yaw);
circle_set_center(pv_location_to_vector(command_nav_queue), ahrs.yaw);
}
// set yaw to point to center of circle
circle_WP = next_WP;
yaw_look_at_WP = circle_WP;
yaw_look_at_WP = circle_center;
set_yaw_mode(CIRCLE_YAW);
// set angle travelled so far to zero
@ -401,8 +400,8 @@ static void do_loiter_time() @@ -401,8 +400,8 @@ static void do_loiter_time()
}else{
// location specified so fly to the target location
set_nav_mode(NAV_WP);
// Set inav navigation target
wpinav_set_destination(command_nav_queue);
// Set wp navigation target
wp_nav.set_destination(pv_location_to_vector(command_nav_queue));
}
loiter_time_max = command_nav_queue.p1 * 1000; // units are (seconds)
@ -518,12 +517,13 @@ static bool verify_RTL() @@ -518,12 +517,13 @@ static bool verify_RTL()
// rely on verify_altitude function to update alt_change_flag when we've reached the target
if(alt_change_flag == REACHED_ALT || alt_change_flag == DESCENDING) {
// override target altitude to RTL altitude
// To-Do: figure out if we want wp_nav to be responsible for altitude
set_new_altitude(get_RTL_alt());
// set navigation mode
set_nav_mode(NAV_WP);
// Set inav navigation target to home
wpinav_set_destination(home);
// Set wp navigation target to above home
wp_nav.set_destination(Vector3f(0,0,get_RTL_alt()));
// set yaw mode
set_yaw_mode(RTL_YAW);
@ -575,8 +575,8 @@ static bool verify_RTL() @@ -575,8 +575,8 @@ static bool verify_RTL()
if(current_loc.alt <= g.rtl_alt_final || alt_change_flag == REACHED_ALT) {
// switch to regular loiter mode
set_mode(LOITER);
// set loiter target to home position
loiter_set_target(0,0);
// set loiter target to home position (note altitude is actually ignored)
wp_nav.set_loiter_target(Vector3f(0,0,g.rtl_alt_final));
// override altitude to RTL altitude
set_new_altitude(g.rtl_alt_final);
retval = true;
@ -889,7 +889,7 @@ static void do_nav_roi() @@ -889,7 +889,7 @@ static void do_nav_roi()
// check if mount type requires us to rotate the quad
if( camera_mount.get_mount_type() != AP_Mount::k_pan_tilt && camera_mount.get_mount_type() != AP_Mount::k_pan_tilt_roll ) {
yaw_look_at_WP = command_nav_queue;
yaw_look_at_WP = pv_location_to_vector(command_nav_queue);
set_yaw_mode(YAW_LOOK_AT_LOCATION);
}
// send the command to the camera mount
@ -903,7 +903,7 @@ static void do_nav_roi() @@ -903,7 +903,7 @@ static void do_nav_roi()
// 4: point at a target given a target id (can't be implmented)
#else
// if we have no camera mount aim the quad at the location
yaw_look_at_WP = command_nav_queue;
yaw_look_at_WP = pv_location_to_vector(command_nav_queue);
set_yaw_mode(YAW_LOOK_AT_LOCATION);
#endif
}

329
ArduCopter/navigation.pde

@ -56,39 +56,24 @@ static void calc_position(){ @@ -56,39 +56,24 @@ static void calc_position(){
// calc_distance_and_bearing - calculate distance and direction to waypoints for reporting and autopilot decisions
static void calc_distance_and_bearing()
{
// get current position
Vector2f curr_pos(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff());
Vector2f dest;
Vector3f curr = inertial_nav.get_position();
// get target from loiter or wpinav controller
if( nav_mode == NAV_LOITER || nav_mode == NAV_CIRCLE ) {
dest.x = loiter_lat_from_home_cm;
dest.y = loiter_lon_from_home_cm;
wp_distance = wp_nav.get_distance_to_target();
wp_bearing = wp_nav.get_bearing_to_target();
}else if( nav_mode == NAV_WP ) {
dest.x = wpinav_destination.x;
dest.y = wpinav_destination.y;
}else{
dest = curr_pos;
}
// calculate distance to target
lat_error = dest.x - curr_pos.x;
lon_error = dest.y - curr_pos.y;
wp_distance = safe_sqrt(lat_error*lat_error+lon_error*lon_error);
// calculate waypoint bearing
// To-Do: change this to more efficient calculation
if( waypoint_valid(next_WP) ) {
wp_bearing = get_bearing_cd(&current_loc, &next_WP);
wp_distance = wp_nav.get_distance_to_destination();
wp_bearing = wp_nav.get_bearing_to_destination();
}else{
wp_distance = 0;
wp_bearing = 0;
}
// calculate home distance and bearing
if( ap.home_is_set ) {
home_distance = safe_sqrt(curr_pos.x*curr_pos.x + curr_pos.y*curr_pos.y);
// To-Do: change this to more efficient calculation
home_bearing = get_bearing_cd(&current_loc, &home);
home_distance = pythagorous2(curr.x, curr.y);
home_bearing = pv_get_bearing_cd(curr,Vector3f(0,0,0));
// update super simple bearing (if required) because it relies on home_bearing
update_super_simple_bearing();
@ -99,8 +84,8 @@ static void calc_distance_and_bearing() @@ -99,8 +84,8 @@ static void calc_distance_and_bearing()
// calculate bearing to target (used when yaw_mode = YAW_LOOK_AT_LOCATION)
// To-Do: move this to the look-at-waypoint yaw controller
if( waypoint_valid(yaw_look_at_WP) ) {
yaw_look_at_WP_bearing = get_bearing_cd(&current_loc, &yaw_look_at_WP);
if( yaw_mode == YAW_LOOK_AT_LOCATION ) {
yaw_look_at_WP_bearing = pv_get_bearing_cd(curr, yaw_look_at_WP);
}
}
@ -143,13 +128,13 @@ static bool set_nav_mode(uint8_t new_nav_mode) @@ -143,13 +128,13 @@ static bool set_nav_mode(uint8_t new_nav_mode)
case NAV_CIRCLE:
// set center of circle to current position
circle_set_center(Vector2f(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff()), ahrs.yaw);
circle_set_center(inertial_nav.get_position(), ahrs.yaw);
nav_initialised = true;
break;
case NAV_LOITER:
// set target to current position
loiter_set_target(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff());
wp_nav.set_loiter_target(inertial_nav.get_position());
nav_initialised = true;
break;
@ -178,19 +163,17 @@ static void update_nav_mode() @@ -178,19 +163,17 @@ static void update_nav_mode()
case NAV_CIRCLE:
// call circle controller which in turn calls loiter controller
circle_get_pos(dTnav);
update_circle(dTnav);
break;
case NAV_LOITER:
get_loiter_pos_lat_lon(loiter_lat_from_home_cm, loiter_lon_from_home_cm, 0.1f);
// call loiter controller
wp_nav.update_loiter();
break;
case NAV_WP:
// move forward on the waypoint
// To-Do: slew up the speed to the max waypoint speed instead of immediately jumping to max
wpinav_advance_track_desired(g.waypoint_speed_max, dTnav);
// run the navigation controller
get_wpinav_pos(dTnav);
// call waypoint controller
wp_nav.update_wpnav();
break;
}
@ -271,12 +254,8 @@ static void reset_nav_params(void) @@ -271,12 +254,8 @@ static void reset_nav_params(void)
// Will be set by nav or loiter controllers
lon_error = 0;
lat_error = 0;
nav_lon = 0;
nav_lat = 0;
nav_roll = 0;
nav_pitch = 0;
auto_roll = 0;
auto_pitch = 0;
}
// get_yaw_slew - reduces rate of change of yaw to a maximum
@ -296,267 +275,6 @@ static bool waypoint_valid(Location &wp) @@ -296,267 +275,6 @@ static bool waypoint_valid(Location &wp)
}
}
////////////////////////////////////////////////////
// Loiter controller using inertial nav
////////////////////////////////////////////////////
// get_loiter_accel - loiter acceration controllers with desired accelerations provided in forward/right directions in cm/s/s
static void
get_loiter_accel(int16_t accel_req_forward, int16_t accel_req_right)
{
float z_accel_meas = -GRAVITY_MSS * 100; // gravity in cm/s/s
// update angle targets that will be passed to stabilize controller
auto_roll = constrain((accel_req_right/(-z_accel_meas))*(18000/M_PI), -4500, 4500);
auto_pitch = constrain((-accel_req_forward/(-z_accel_meas*cos_roll_x))*(18000/M_PI), -4500, 4500);
}
// get_loiter_accel_lat_lon - loiter acceration controller with desired accelerations provided in lat/lon directions in cm/s/s
static void
get_loiter_accel_lat_lon(int16_t accel_lat, int16_t accel_lon)
{
float accel_forward;
float accel_right;
accel_forward = accel_lat*cos_yaw + accel_lon*sin_yaw;
accel_right = -accel_lat*sin_yaw + accel_lon*cos_yaw;
get_loiter_accel(accel_forward, accel_right);
}
// get_loiter_vel_lat_lon - loiter velocity controller with desired velocity provided in lat/lon directions in cm/s
#define MAX_LOITER_VEL_ACCEL 400 // should be 1.5 times larger than MAX_LOITER_POS_ACCEL
static void
get_loiter_vel_lat_lon(int16_t vel_lat, int16_t vel_lon, float dt)
{
float speed_error_lat = 0; // The velocity in cm/s.
float speed_error_lon = 0; // The velocity in cm/s.
float speed_lat = inertial_nav.get_latitude_velocity();
float speed_lon = inertial_nav.get_longitude_velocity();
int32_t accel_lat;
int32_t accel_lon;
int32_t accel_total;
int16_t lat_p,lat_i,lat_d;
int16_t lon_p,lon_i,lon_d;
// calculate vel error
speed_error_lat = vel_lat - speed_lat;
speed_error_lon = vel_lon - speed_lon;
lat_p = g.pid_loiter_rate_lat.get_p(speed_error_lat);
lat_i = g.pid_loiter_rate_lat.get_i(speed_error_lat, dt);
lat_d = g.pid_loiter_rate_lat.get_d(speed_error_lat, dt);
lon_p = g.pid_loiter_rate_lon.get_p(speed_error_lon);
lon_i = g.pid_loiter_rate_lon.get_i(speed_error_lon, dt);
lon_d = g.pid_loiter_rate_lon.get_d(speed_error_lon, dt);
accel_lat = (lat_p+lat_i+lat_d);
accel_lon = (lon_p+lon_i+lon_d);
accel_total = safe_sqrt(accel_lat*accel_lat + accel_lon*accel_lon);
if( accel_total > MAX_LOITER_VEL_ACCEL ) {
accel_lat = MAX_LOITER_VEL_ACCEL * accel_lat/accel_total;
accel_lon = MAX_LOITER_VEL_ACCEL * accel_lon/accel_total;
}
get_loiter_accel_lat_lon(accel_lat, accel_lon);
}
// get_loiter_pos_lat_lon - loiter position controller with desired position provided as distance from home in lat/lon directions in cm
#define MAX_LOITER_POS_VELOCITY 750 // should be 1.5 ~ 2.0 times the pilot input's max velocity
#define MAX_LOITER_POS_ACCEL 250
static void
get_loiter_pos_lat_lon(int32_t target_lat_from_home, int32_t target_lon_from_home, float dt)
{
float dist_error_lat;
int32_t desired_vel_lat;
float dist_error_lon;
int32_t desired_vel_lon;
int32_t dist_error_total;
int16_t vel_sqrt;
int32_t vel_total;
int16_t linear_distance; // the distace we swap between linear and sqrt.
// calculate distance error
Vector3f curr = inertial_nav.get_position();
dist_error_lat = target_lat_from_home - curr.x;
dist_error_lon = target_lon_from_home - curr.y;
linear_distance = MAX_LOITER_POS_ACCEL/(2*g.pi_loiter_lat.kP()*g.pi_loiter_lat.kP());
dist_error_total = safe_sqrt(dist_error_lat*dist_error_lat + dist_error_lon*dist_error_lon);
if( dist_error_total > 2*linear_distance ) {
vel_sqrt = constrain(safe_sqrt(2*MAX_LOITER_POS_ACCEL*(dist_error_total-linear_distance)),0,1000);
desired_vel_lat = vel_sqrt * dist_error_lat/dist_error_total;
desired_vel_lon = vel_sqrt * dist_error_lon/dist_error_total;
}else{
desired_vel_lat = g.pi_loiter_lat.get_p(dist_error_lat);
desired_vel_lon = g.pi_loiter_lon.get_p(dist_error_lon);
}
vel_total = safe_sqrt(desired_vel_lat*desired_vel_lat + desired_vel_lon*desired_vel_lon);
if( vel_total > MAX_LOITER_POS_VELOCITY ) {
desired_vel_lat = MAX_LOITER_POS_VELOCITY * desired_vel_lat/vel_total;
desired_vel_lon = MAX_LOITER_POS_VELOCITY * desired_vel_lon/vel_total;
}
get_loiter_vel_lat_lon(desired_vel_lat, desired_vel_lon, dt);
}
#define MAX_LOITER_POS_VEL_VELOCITY 1000
// loiter_set_pos_from_velocity - loiter velocity controller with desired velocity provided in front/right directions in cm/s
static void
loiter_set_pos_from_velocity(int16_t vel_forward_cms, int16_t vel_right_cms, float dt)
{
int32_t vel_lat;
int32_t vel_lon;
int32_t vel_total;
vel_lat = vel_forward_cms*cos_yaw - vel_right_cms*sin_yaw;
vel_lon = vel_forward_cms*sin_yaw + vel_right_cms*cos_yaw;
// constrain the velocity vector and scale if necessary
vel_total = safe_sqrt(vel_lat*vel_lat + vel_lon*vel_lon);
if( vel_total > MAX_LOITER_POS_VEL_VELOCITY ) {
vel_lat = MAX_LOITER_POS_VEL_VELOCITY * vel_lat/vel_total;
vel_lon = MAX_LOITER_POS_VEL_VELOCITY * vel_lon/vel_total;
}
// update loiter target position
loiter_lat_from_home_cm += vel_lat * dt;
loiter_lon_from_home_cm += vel_lon * dt;
// update next_WP location for reporting purposes
set_next_WP_latlon(
home.lat + loiter_lat_from_home_cm / LATLON_TO_CM,
home.lng + loiter_lon_from_home_cm / LATLON_TO_CM * scaleLongUp);
}
// loiter_set_target - set loiter's target position from home in cm
// To-Do: change this function to accept a target in lat/lon format (and remove setting of next_WP?)
static void
loiter_set_target(float lat_from_home_cm, float lon_from_home_cm)
{
loiter_lat_from_home_cm = lat_from_home_cm;
loiter_lon_from_home_cm = lon_from_home_cm;
// update next_WP location for reporting purposes
set_next_WP_latlon(
home.lat + loiter_lat_from_home_cm / LATLON_TO_CM,
home.lng + loiter_lon_from_home_cm / LATLON_TO_CM * scaleLongUp);
}
//////////////////////////////////////////////////////////
// waypoint inertial navigation controller
//////////////////////////////////////////////////////////
// Waypoint navigation is accomplished by moving the target location up to a maximum of 10m from the current location
// get_wpinav_pos - wpinav position controller with desired position held in wpinav_destination
static void
get_wpinav_pos(float dt)
{
// re-use loiter position controller
get_loiter_pos_lat_lon(wpinav_target.x, wpinav_target.y, dt);
}
// wpinav_set_destination - set destination using lat/lon coordinates
void wpinav_set_destination(const Location& destination)
{
wpinav_set_origin_and_destination(current_loc, destination);
}
// wpinav_set_origin_and_destination - set origin and destination using lat/lon coordinates
void wpinav_set_origin_and_destination(const Location& origin, const Location& destination)
{
wpinav_origin.x = (origin.lat-home.lat) * LATLON_TO_CM;
wpinav_origin.y = (origin.lng-home.lng) * LATLON_TO_CM * scaleLongDown;
wpinav_destination.x = (destination.lat-home.lat) * LATLON_TO_CM;
wpinav_destination.y = (destination.lng-home.lng) * LATLON_TO_CM * scaleLongDown;
wpinav_pos_delta = wpinav_destination - wpinav_origin;
wpinav_track_length = wpinav_pos_delta.length();
wpinav_track_desired = 0;
// set next_WP, prev_WP for reporting purposes
// To-Do: move calcs below to a function
set_next_WP_latlon(
home.lat + wpinav_destination.x / LATLON_TO_CM,
home.lng + wpinav_destination.y / LATLON_TO_CM * scaleLongUp);
}
#define WPINAV_MAX_POS_ERROR 2000.0f // maximum distance (in cm) that the desired track can stray from our current location.
void
wpinav_advance_track_desired(float velocity_cms, float dt)
{
float cross_track_dist;
float track_covered;
float track_desired_max;
float line_a, line_b, line_c, line_m;
// get current location
Vector2f curr(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff());
// check for zero length segment
if( wpinav_pos_delta.x == 0 && wpinav_pos_delta.y == 0) {
wpinav_target = wpinav_destination;
return;
}
if( wpinav_pos_delta.x == 0 ) {
// x is zero
cross_track_dist = fabs(curr.x - wpinav_destination.x);
track_covered = fabs(curr.y - wpinav_origin.y);
}else if(wpinav_pos_delta.y == 0) {
// y is zero
cross_track_dist = fabs(curr.y - wpinav_destination.y);
track_covered = fabs(curr.x - wpinav_origin.x);
}else{
// both x and y non zero
line_a = wpinav_pos_delta.y;
line_b = -wpinav_pos_delta.x;
line_c = wpinav_pos_delta.x * wpinav_origin.y - wpinav_pos_delta.y * wpinav_origin.x;
line_m = line_a / line_b;
cross_track_dist = abs(line_a * curr.x + line_b * curr.y + line_c ) / wpinav_track_length;
line_m = 1/line_m;
line_a = line_m;
line_b = -1;
line_c = curr.y - line_m * curr.x;
// calculate the distance to the closest point along the track and it's distance from the origin
track_covered = abs(line_a*wpinav_origin.x + line_b*wpinav_origin.y + line_c) / safe_sqrt(line_a*line_a+line_b*line_b);
}
// maximum distance along the track that we will allow (stops target point from getting too far from the current position)
track_desired_max = track_covered + safe_sqrt(WPINAV_MAX_POS_ERROR*WPINAV_MAX_POS_ERROR-cross_track_dist*cross_track_dist);
// advance the current target
wpinav_track_desired += velocity_cms * dt;
// constrain the target from moving too far
if( wpinav_track_desired > track_desired_max ) {
wpinav_track_desired = track_desired_max;
}
if( wpinav_track_desired > wpinav_track_length ) {
wpinav_track_desired = wpinav_track_length;
}
// recalculate the desired position
float track_length_pct = wpinav_track_desired/wpinav_track_length;
wpinav_target.x = wpinav_origin.x + wpinav_pos_delta.x * track_length_pct;
wpinav_target.y = wpinav_origin.y + wpinav_pos_delta.y * track_length_pct;
}
//////////////////////////////////////////////////////////
// circle navigation controller
@ -564,7 +282,7 @@ wpinav_advance_track_desired(float velocity_cms, float dt) @@ -564,7 +282,7 @@ wpinav_advance_track_desired(float velocity_cms, float dt)
// circle_set_center -- set circle controller's center position and starting angle
static void
circle_set_center(const Vector2f pos_vec, float heading_in_radians)
circle_set_center(const Vector3f pos_vec, float heading_in_radians)
{
// set circle center
circle_center = pos_vec;
@ -584,11 +302,11 @@ circle_set_center(const Vector2f pos_vec, float heading_in_radians) @@ -584,11 +302,11 @@ circle_set_center(const Vector2f pos_vec, float heading_in_radians)
// circle_get_pos - circle position controller's main call which in turn calls loiter controller with updated target position
static void
circle_get_pos(float dt)
update_circle(float dt)
{
float angle_delta = circle_rate * dt;
float cir_radius = g.circle_radius * 100;
Vector2f circle_target;
Vector3f circle_target;
// update the target angle
circle_angle += angle_delta;
@ -607,5 +325,8 @@ circle_get_pos(float dt) @@ -607,5 +325,8 @@ circle_get_pos(float dt)
circle_target.y = circle_center.y + cir_radius * cosf(1.57f - circle_angle);
// re-use loiter position controller
get_loiter_pos_lat_lon(circle_target.x, circle_target.y, dt);
wp_nav.set_loiter_target(circle_target);
// call loiter controller
wp_nav.update_loiter();
}

30
ArduCopter/position_vector.pde

@ -5,38 +5,44 @@ @@ -5,38 +5,44 @@
// position vectors are Vector2f
// .x = latitude from home in cm
// .y = longitude from home in cm
// .z = altitude above home in cm
// pv_latlon_to_vector - convert lat/lon coordinates to a position vector
const Vector2f pv_latlon_to_vector(int32_t lat, int32_t lon)
const Vector3f pv_latlon_to_vector(int32_t lat, int32_t lon, int32_t alt)
{
Vector2f tmp(lat-home.lat * LATLON_TO_CM, lon-home.lng * LATLON_TO_CM * scaleLongDown);
Vector3f tmp((lat-home.lat) * LATLON_TO_CM, (lon-home.lng) * LATLON_TO_CM * scaleLongDown, alt);
return tmp;
}
// pv_latlon_to_vector - convert lat/lon coordinates to a position vector
const Vector3f pv_location_to_vector(Location loc)
{
Vector3f tmp((loc.lat-home.lat) * LATLON_TO_CM, (loc.lng-home.lng) * LATLON_TO_CM * scaleLongDown, loc.alt);
return tmp;
}
// pv_get_lon - extract latitude from position vector
const int32_t pv_get_lat(const Vector2f pos_vec)
const int32_t pv_get_lat(const Vector3f pos_vec)
{
return home.lat + (int32_t)(pos_vec.x / LATLON_TO_CM);
}
// pv_get_lon - extract longitude from position vector
const int32_t pv_get_lon(const Vector2f pos_vec)
const int32_t pv_get_lon(const Vector3f pos_vec)
{
return home.lng + (int32_t)(pos_vec.y / LATLON_TO_CM * scaleLongUp);
}
// pv_get_distance_cm - return distance between two positions in cm
const float pv_get_distance_cm(const Vector2f origin, const Vector2f destination)
// pv_get_horizontal_distance_cm - return distance between two positions in cm
const float pv_get_horizontal_distance_cm(const Vector3f origin, const Vector3f destination)
{
Vector2f dist = destination - origin;
return pythagorous2(dist.x,dist.y);
return pythagorous2(destination.x-origin.x,destination.y-origin.y);
}
// pv_get_bearing_cd - return bearing in centi-degrees between two locations
const float pv_get_bearing_cd(const Vector2f origin, const Vector2f destination)
// pv_get_bearing_cd - return bearing in centi-degrees between two positions
const float pv_get_bearing_cd(const Vector3f origin, const Vector3f destination)
{
Vector2f dist = destination - origin;
int32_t bearing = 9000 + atan2f(dist.x, dist.y) * 5729.57795f;
float bearing = 9000 + atan2f(-(destination.x-origin.x), destination.y-origin.y) * 5729.57795f;
if (bearing < 0) {
bearing += 36000;
}

3
ArduCopter/system.pde

@ -427,7 +427,6 @@ static void set_mode(uint8_t mode) @@ -427,7 +427,6 @@ static void set_mode(uint8_t mode)
ap.manual_throttle = false;
ap.manual_attitude = false;
// set yaw to point to center of circle
yaw_look_at_WP = circle_WP;
set_yaw_mode(CIRCLE_YAW);
set_roll_pitch_mode(CIRCLE_RP);
set_throttle_mode(CIRCLE_THR);
@ -527,8 +526,6 @@ static void set_mode(uint8_t mode) @@ -527,8 +526,6 @@ static void set_mode(uint8_t mode)
// We are under manual attitude control
// remove the navigation from roll and pitch command
reset_nav_params();
// remove the wind compenstaion
reset_wind_I();
}
Log_Write_Mode(control_mode);

Loading…
Cancel
Save