Browse Source

AP_HAL_AVR: Improved AVRTimer micros() and millis()

- More efficient code by using 16-bit timer
- micros() now has proper 1 us resolution and less overhead
- millis() has less overhead
- removed unneeded/unwanted initializatin of timers in AVRTimer::init()

pull request 62, approved and merged by pat
mission-4.1.18
John Arne Birkeland 12 years ago committed by Pat Hickey
parent
commit
527dcdf3b9
  1. 5
      libraries/AP_HAL_AVR/RCInput_APM1.cpp
  2. 5
      libraries/AP_HAL_AVR/RCInput_APM2.cpp
  3. 120
      libraries/AP_HAL_AVR/Scheduler_Timer.cpp

5
libraries/AP_HAL_AVR/RCInput_APM1.cpp

@ -64,7 +64,7 @@ void APM1RCInput::init(void* _isrregistry) {
*/ */
TCCR4A = _BV(WGM40) | _BV(WGM41); TCCR4A = _BV(WGM40) | _BV(WGM41);
TCCR4B = _BV(WGM43) | _BV(WGM42) | _BV(CS41) | _BV(ICES4); TCCR4B = _BV(WGM43) | _BV(WGM42) | _BV(CS41) | _BV(ICES4);
OCR4A = 40000; OCR4A = 40000 - 1; // -1 to correct for wrap
/* OCR4B and OCR4C will be used by RCOutput_APM1. init to nil output */ /* OCR4B and OCR4C will be used by RCOutput_APM1. init to nil output */
OCR4B = 0xFFFF; OCR4B = 0xFFFF;
@ -72,6 +72,9 @@ void APM1RCInput::init(void* _isrregistry) {
/* Enable input capture interrupt */ /* Enable input capture interrupt */
TIMSK4 |= _BV(ICIE4); TIMSK4 |= _BV(ICIE4);
/* Enable overflow interrupt */
TIMSK4 |= _BV(TOIE4);
} }
uint8_t APM1RCInput::valid() { return _valid; } uint8_t APM1RCInput::valid() { return _valid; }

5
libraries/AP_HAL_AVR/RCInput_APM2.cpp

@ -64,7 +64,7 @@ void APM2RCInput::init(void* _isrregistry) {
*/ */
TCCR5A = _BV(WGM50) | _BV(WGM51); TCCR5A = _BV(WGM50) | _BV(WGM51);
TCCR5B = _BV(WGM53) | _BV(WGM52) | _BV(CS51) | _BV(ICES5); TCCR5B = _BV(WGM53) | _BV(WGM52) | _BV(CS51) | _BV(ICES5);
OCR5A = 40000; OCR5A = 40000 - 1; // -1 to correct for wrap
/* OCR5B and OCR5C will be used by RCOutput_APM2. init to nil output */ /* OCR5B and OCR5C will be used by RCOutput_APM2. init to nil output */
OCR5B = 0xFFFF; OCR5B = 0xFFFF;
@ -72,6 +72,9 @@ void APM2RCInput::init(void* _isrregistry) {
/* Enable input capture interrupt */ /* Enable input capture interrupt */
TIMSK5 |= _BV(ICIE5); TIMSK5 |= _BV(ICIE5);
/* Enable overflow interrupt */
TIMSK5 |= _BV(TOIE5);
} }
uint8_t APM2RCInput::valid() { return _valid; } uint8_t APM2RCInput::valid() { return _valid; }

120
libraries/AP_HAL_AVR/Scheduler_Timer.cpp

@ -10,47 +10,13 @@ using namespace AP_HAL_AVR;
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
static volatile uint32_t timer0_overflow_count = 0; static volatile uint32_t timer_micros_counter = 0;
static volatile uint32_t timer0_millis = 0; static volatile uint32_t timer_millis_counter = 0;
static uint8_t timer0_fract = 0;
void AVRTimer::init() { void AVRTimer::init() {
// this needs to be called before setup() or some functions won't // this needs to be called before setup() or some functions won't
// work there // work there
sei(); sei();
// set timer 0 prescale factor to 64
// this combination is for the standard 168/328/1280/2560
sbi(TCCR0B, CS01);
sbi(TCCR0B, CS00);
// enable timer 0 overflow interrupt
sbi(TIMSK0, TOIE0);
// timers 1 and 2 are used for phase-correct hardware pwm
// this is better for motors as it ensures an even waveform
// note, however, that fast pwm mode can achieve a frequency of up
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
TCCR1B = 0;
// set timer 1 prescale factor to 64
sbi(TCCR1B, CS11);
sbi(TCCR1B, CS10);
// put timer 1 in 8-bit phase correct pwm mode
sbi(TCCR1A, WGM10);
sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
sbi(TCCR3B, CS30);
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
sbi(TCCR4B, CS40);
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
sbi(TCCR5B, CS50);
sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
// set a2d prescale factor to 128 // set a2d prescale factor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range. // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
@ -69,74 +35,42 @@ void AVRTimer::init() {
UCSR0B = 0; UCSR0B = 0;
} }
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L ) #if (CONFIG_HAL_BOARD == HAL_BOARD_APM1 )
#define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) ) #define AVR_TIMER_OVF_VECT TIMER4_OVF_vect
#define AVR_TIMER_TCNT TCNT4
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the #elif (CONFIG_HAL_BOARD == HAL_BOARD_APM2 )
// the overflow handler is called every 256 ticks. #define AVR_TIMER_OVF_VECT TIMER5_OVF_vect
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256)) #define AVR_TIMER_TCNT TCNT5
#endif
// the whole number of milliseconds per timer0 overflow
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
// the fractional number of milliseconds per timer0 overflow. we shift right
// by three to fit these numbers into a byte. (for the clock speeds we care
// about - 8 and 16 MHz - this doesn't lose precision.)
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
#define FRACT_MAX (1000 >> 3)
SIGNAL(TIMER0_OVF_vect) SIGNAL( AVR_TIMER_OVF_VECT)
{ {
// copy these to local variables so they can be stored in registers // Hardcoded for AVR@16MHZ and 8x pre-scale 16-bit timer overflow at 40000
// (volatile variables must be read from memory on every access) timer_micros_counter += 40000 / 2; // 20000us each overflow
uint32_t m = timer0_millis; timer_millis_counter += 40000 / 2000; // 20ms each overlflow
uint8_t f = timer0_fract;
m += MILLIS_INC;
f += FRACT_INC;
if (f >= FRACT_MAX) {
f -= FRACT_MAX;
m += 1;
}
timer0_fract = f;
timer0_millis = m;
timer0_overflow_count++;
} }
uint32_t AVRTimer::millis() uint32_t AVRTimer::micros() {
{ uint8_t oldSREG = SREG;
uint32_t m;
uint8_t oldSREG = SREG;
// disable interrupts while we read timer0_millis or we might get an
// inconsistent value (e.g. in the middle of a write to timer0_millis)
cli(); cli();
m = timer0_millis; // Hardcoded for AVR@16MHZ and 8x pre-scale 16-bit timer
SREG = oldSREG; //uint32_t time_micros = timer_micros_counter + (AVR_TIMER_TCNT / 2);
uint32_t time_micros = timer_micros_counter + (AVR_TIMER_TCNT >> 1);
return m; SREG = oldSREG;
return time_micros;
} }
uint32_t AVRTimer::micros() { uint32_t AVRTimer::millis() {
uint32_t m;
uint8_t t;
uint8_t oldSREG = SREG; uint8_t oldSREG = SREG;
cli(); cli();
// Hardcoded for AVR@16MHZ and 8x pre-scale 16-bit timer
m = timer0_overflow_count; //uint32_t time_millis = timer_millis_counter + (AVR_TIMER_TCNT / 2000) ;
t = TCNT0; uint32_t time_millis = timer_millis_counter + (AVR_TIMER_TCNT >> 11); // AVR_TIMER_CNT / 2048 is close enough (24us counter delay)
SREG = oldSREG;
if ((TIFR0 & _BV(TOV0)) && (t < 255)) return time_millis;
m++;
SREG = oldSREG;
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
} }
/* Delay for the given number of microseconds. Assumes a 16 MHz clock. */ /* Delay for the given number of microseconds. Assumes a 16 MHz clock. */
void AVRTimer::delay_microseconds(uint16_t us) void AVRTimer::delay_microseconds(uint16_t us)
{ {

Loading…
Cancel
Save