@ -10,48 +10,14 @@ using namespace AP_HAL_AVR;
@@ -10,48 +10,14 @@ using namespace AP_HAL_AVR;
# define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
# define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
static volatile uint32_t timer0_overflow_count = 0 ;
static volatile uint32_t timer0_millis = 0 ;
static uint8_t timer0_fract = 0 ;
static volatile uint32_t timer_micros_counter = 0 ;
static volatile uint32_t timer_millis_counter = 0 ;
void AVRTimer : : init ( ) {
// this needs to be called before setup() or some functions won't
// work there
sei ( ) ;
// set timer 0 prescale factor to 64
// this combination is for the standard 168/328/1280/2560
sbi ( TCCR0B , CS01 ) ;
sbi ( TCCR0B , CS00 ) ;
// enable timer 0 overflow interrupt
sbi ( TIMSK0 , TOIE0 ) ;
// timers 1 and 2 are used for phase-correct hardware pwm
// this is better for motors as it ensures an even waveform
// note, however, that fast pwm mode can achieve a frequency of up
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
TCCR1B = 0 ;
// set timer 1 prescale factor to 64
sbi ( TCCR1B , CS11 ) ;
sbi ( TCCR1B , CS10 ) ;
// put timer 1 in 8-bit phase correct pwm mode
sbi ( TCCR1A , WGM10 ) ;
sbi ( TCCR3B , CS31 ) ; // set timer 3 prescale factor to 64
sbi ( TCCR3B , CS30 ) ;
sbi ( TCCR3A , WGM30 ) ; // put timer 3 in 8-bit phase correct pwm mode
sbi ( TCCR4B , CS41 ) ; // set timer 4 prescale factor to 64
sbi ( TCCR4B , CS40 ) ;
sbi ( TCCR4A , WGM40 ) ; // put timer 4 in 8-bit phase correct pwm mode
sbi ( TCCR5B , CS51 ) ; // set timer 5 prescale factor to 64
sbi ( TCCR5B , CS50 ) ;
sbi ( TCCR5A , WGM50 ) ; // put timer 5 in 8-bit phase correct pwm mode
// set a2d prescale factor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
// XXX: this will not work properly for other clock speeds, and
@ -69,74 +35,42 @@ void AVRTimer::init() {
@@ -69,74 +35,42 @@ void AVRTimer::init() {
UCSR0B = 0 ;
}
# define clockCyclesPerMicrosecond() ( F_CPU / 1000000L )
# define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) )
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
// the overflow handler is called every 256 ticks.
# define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
// the whole number of milliseconds per timer0 overflow
# define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
// the fractional number of milliseconds per timer0 overflow. we shift right
// by three to fit these numbers into a byte. (for the clock speeds we care
// about - 8 and 16 MHz - this doesn't lose precision.)
# define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
# define FRACT_MAX (1000 >> 3)
# if (CONFIG_HAL_BOARD == HAL_BOARD_APM1 )
# define AVR_TIMER_OVF_VECT TIMER4_OVF_vect
# define AVR_TIMER_TCNT TCNT4
# elif (CONFIG_HAL_BOARD == HAL_BOARD_APM2 )
# define AVR_TIMER_OVF_VECT TIMER5_OVF_vect
# define AVR_TIMER_TCNT TCNT5
# endif
SIGNAL ( TIMER0_OVF_vect )
SIGNAL ( AVR_TIMER_OVF_VECT )
{
// copy these to local variables so they can be stored in registers
// (volatile variables must be read from memory on every access)
uint32_t m = timer0_millis ;
uint8_t f = timer0_fract ;
m + = MILLIS_INC ;
f + = FRACT_INC ;
if ( f > = FRACT_MAX ) {
f - = FRACT_MAX ;
m + = 1 ;
// Hardcoded for AVR@16MHZ and 8x pre-scale 16-bit timer overflow at 40000
timer_micros_counter + = 40000 / 2 ; // 20000us each overflow
timer_millis_counter + = 40000 / 2000 ; // 20ms each overlflow
}
timer0_fract = f ;
timer0_millis = m ;
timer0_overflow_count + + ;
}
uint32_t AVRTimer : : millis ( )
{
uint32_t m ;
uint32_t AVRTimer : : micros ( ) {
uint8_t oldSREG = SREG ;
// disable interrupts while we read timer0_millis or we might get an
// inconsistent value (e.g. in the middle of a write to timer0_millis)
cli ( ) ;
m = timer0_millis ;
// Hardcoded for AVR@16MHZ and 8x pre-scale 16-bit timer
//uint32_t time_micros = timer_micros_counter + (AVR_TIMER_TCNT / 2);
uint32_t time_micros = timer_micros_counter + ( AVR_TIMER_TCNT > > 1 ) ;
SREG = oldSREG ;
return m ;
return time_micros ;
}
uint32_t AVRTimer : : micros ( ) {
uint32_t m ;
uint8_t t ;
uint32_t AVRTimer : : millis ( ) {
uint8_t oldSREG = SREG ;
cli ( ) ;
m = timer0_overflow_count ;
t = TCNT0 ;
if ( ( TIFR0 & _BV ( TOV0 ) ) & & ( t < 255 ) )
m + + ;
// Hardcoded for AVR@16MHZ and 8x pre-scale 16-bit timer
//uint32_t time_millis = timer_millis_counter + (AVR_TIMER_TCNT / 2000) ;
uint32_t time_millis = timer_millis_counter + ( AVR_TIMER_TCNT > > 11 ) ; // AVR_TIMER_CNT / 2048 is close enough (24us counter delay)
SREG = oldSREG ;
return ( ( m < < 8 ) + t ) * ( 64 / clockCyclesPerMicrosecond ( ) ) ;
return time_millis ;
}
/* Delay for the given number of microseconds. Assumes a 16 MHz clock. */
void AVRTimer : : delay_microseconds ( uint16_t us )
{