Browse Source

AP_Proximity: refactor Boundary_3D

rename stack to layer
swap order of layer and sector within arrays
rename Boundary_Location to Face
rename get_sector to get_face
rename set_attributes to set_face_attributes
get_distance returns bool and fills in argument instead of returning distance
zr-v5.1
Randy Mackay 4 years ago
parent
commit
5a0cc08dcc
  1. 239
      libraries/AP_Proximity/AP_Proximity_Boundary_3D.cpp
  2. 115
      libraries/AP_Proximity/AP_Proximity_Boundary_3D.h

239
libraries/AP_Proximity/AP_Proximity_Boundary_3D.cpp

@ -8,60 +8,75 @@ @@ -8,60 +8,75 @@
AP_Proximity_Boundary_3D::AP_Proximity_Boundary_3D()
{
// initialise sector edge vector used for building the boundary fence
init_boundary();
init();
}
// initialise the boundary and sector_edge_vector array used for object avoidance
// should be called if the sector_middle_deg or _sector_width_deg arrays are changed
void AP_Proximity_Boundary_3D::init_boundary()
void AP_Proximity_Boundary_3D::init()
{
for (uint8_t stack = 0; stack < PROXIMITY_NUM_LAYERS; stack ++) {
for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) {
for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) {
float angle_rad = ((float)_sector_middle_deg[sector]+(PROXIMITY_SECTOR_WIDTH_DEG/2.0f));
float pitch = ((float)_pitch_middle_deg[stack]);
_sector_edge_vector[sector][stack].offset_bearing(angle_rad, pitch, 100.0f);
_boundary_points[sector][stack] = _sector_edge_vector[sector][stack] * PROXIMITY_BOUNDARY_DIST_DEFAULT;
float pitch = ((float)_pitch_middle_deg[layer]);
_sector_edge_vector[layer][sector].offset_bearing(angle_rad, pitch, 100.0f);
_boundary_points[layer][sector] = _sector_edge_vector[layer][sector] * PROXIMITY_BOUNDARY_DIST_DEFAULT;
}
}
}
// returns Boundary_Location object consisting of appropriate stack and sector corresponding to the yaw and pitch.
// Pitch defaults to zero if only yaw is passed to this method
// Yaw is the horizontal body-frame angle the detected object makes with the vehicle
// Pitch is the vertical body-frame angle the detected object makes with the vehicle
boundary_location AP_Proximity_Boundary_3D::get_sector(float yaw, float pitch)
// returns face corresponding to the provided yaw and (optionally) pitch
// pitch is the vertical body-frame angle (in degrees) to the obstacle (0=directly ahead, 90 is above the vehicle?)
// yaw is the horizontal body-frame angle (in degrees) to the obstacle (0=directly ahead of the vehicle, 90 is to the right of the vehicle)
AP_Proximity_Boundary_3D::Face AP_Proximity_Boundary_3D::get_face(float pitch, float yaw) const
{
const uint8_t sector = wrap_360(yaw + (PROXIMITY_SECTOR_WIDTH_DEG * 0.5f)) / 45.0f;
const float pitch_degrees = constrain_float(pitch, -75.0f, 74.9f);
const uint8_t stack = (pitch_degrees + 75.0f)/PROXIMITY_PITCH_WIDTH_DEG;
return boundary_location{sector, stack};
const float pitch_limited = constrain_float(pitch, -75.0f, 74.9f);
const uint8_t layer = (pitch_limited + 75.0f)/PROXIMITY_PITCH_WIDTH_DEG;
return Face(layer, sector);
}
// Set the actual body-frame angle(yaw), pitch, and distance of the detected object.
// This method will also mark the sector and stack to be "valid", so this distance can be used for Obstacle Avoidance
void AP_Proximity_Boundary_3D::set_attributes(const Boundary_Location& bnd_loc, float angle, float pitch, float distance)
// This method will also mark the sector and layer to be "valid", so this distance can be used for Obstacle Avoidance
void AP_Proximity_Boundary_3D::set_face_attributes(Face face, float angle, float pitch, float distance)
{
const uint8_t sector = bnd_loc.sector;
const uint8_t stack = bnd_loc.stack;
_angle[sector][stack] = angle;
_pitch[sector][stack] = pitch;
_distance[sector][stack] = distance;
_distance_valid[sector][stack] = true;
if (!face.valid()) {
return;
}
_angle[face.layer][face.sector] = angle;
_pitch[face.layer][face.sector] = pitch;
_distance[face.layer][face.sector] = distance;
_distance_valid[face.layer][face.sector] = true;
// update boundary used for simple avoidance
update_boundary(face);
}
// add a distance to the boundary if it is shorter than any other provided distance since the last time the boundary was reset
// pitch and yaw are in degrees, distance is in meters
void AP_Proximity_Boundary_3D::add_distance(float pitch, float yaw, float distance)
{
Face face = get_face(pitch, yaw);
if (!_distance_valid[face.layer][face.sector] || (distance < _distance[face.layer][face.sector])) {
_distance[face.layer][face.sector] = distance;
_distance_valid[face.layer][face.sector] = true;
}
}
// update boundary points used for object avoidance based on a single sector and pitch distance changing
// the boundary points lie on the line between sectors meaning two boundary points may be updated based on a single sector's distance changing
// the boundary point is set to the shortest distance found in the two adjacent sectors, this is a conservative boundary around the vehicle
void AP_Proximity_Boundary_3D::update_boundary(const Boundary_Location& bnd_loc)
void AP_Proximity_Boundary_3D::update_boundary(const Face face)
{
const uint8_t sector = bnd_loc.sector;
const uint8_t layer = bnd_loc.stack;
// sanity check
if (sector >= PROXIMITY_NUM_SECTORS) {
if (!face.valid()) {
return;
}
const uint8_t layer = face.layer;
const uint8_t sector = face.sector;
// find adjacent sector (clockwise)
uint8_t next_sector = sector + 1;
if (next_sector >= PROXIMITY_NUM_SECTORS) {
@ -70,84 +85,100 @@ void AP_Proximity_Boundary_3D::update_boundary(const Boundary_Location& bnd_loc) @@ -70,84 +85,100 @@ void AP_Proximity_Boundary_3D::update_boundary(const Boundary_Location& bnd_loc)
// boundary point lies on the line between the two sectors at the shorter distance found in the two sectors
float shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT;
if (_distance_valid[sector][layer] && _distance_valid[next_sector][layer]) {
shortest_distance = MIN(_distance[sector][layer], _distance[next_sector][layer]);
} else if (_distance_valid[sector][layer]) {
shortest_distance = _distance[sector][layer];
} else if (_distance_valid[next_sector][layer]) {
shortest_distance = _distance[next_sector][layer];
if (_distance_valid[layer][sector] && _distance_valid[layer][next_sector]) {
shortest_distance = MIN(_distance[layer][sector], _distance[layer][next_sector]);
} else if (_distance_valid[layer][sector]) {
shortest_distance = _distance[layer][sector];
} else if (_distance_valid[layer][next_sector]) {
shortest_distance = _distance[layer][next_sector];
}
if (shortest_distance < PROXIMITY_BOUNDARY_DIST_MIN) {
shortest_distance = PROXIMITY_BOUNDARY_DIST_MIN;
}
_boundary_points[sector][layer] = _sector_edge_vector[sector][layer] * shortest_distance;
_boundary_points[layer][sector] = _sector_edge_vector[layer][sector] * shortest_distance;
// if the next sector (clockwise) has an invalid distance, set boundary to create a cup like boundary
if (!_distance_valid[next_sector][layer]) {
_boundary_points[next_sector][layer] = _sector_edge_vector[next_sector][layer] * shortest_distance;
if (!_distance_valid[layer][next_sector]) {
_boundary_points[layer][next_sector] = _sector_edge_vector[layer][next_sector] * shortest_distance;
}
// repeat for edge between sector and previous sector
uint8_t prev_sector = (sector == 0) ? PROXIMITY_NUM_SECTORS-1 : sector-1;
shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT;
if (_distance_valid[prev_sector][layer] && _distance_valid[sector][layer]) {
shortest_distance = MIN(_distance[prev_sector][layer], _distance[sector][layer]);
} else if (_distance_valid[prev_sector][layer]) {
shortest_distance = _distance[prev_sector][layer];
} else if (_distance_valid[sector][layer]) {
shortest_distance = _distance[sector][layer];
if (_distance_valid[layer][prev_sector] && _distance_valid[layer][sector]) {
shortest_distance = MIN(_distance[layer][prev_sector], _distance[layer][sector]);
} else if (_distance_valid[layer][prev_sector]) {
shortest_distance = _distance[layer][prev_sector];
} else if (_distance_valid[layer][sector]) {
shortest_distance = _distance[layer][sector];
}
_boundary_points[prev_sector][layer] = _sector_edge_vector[prev_sector][layer] * shortest_distance;
_boundary_points[layer][prev_sector] = _sector_edge_vector[layer][prev_sector] * shortest_distance;
// if the sector counter-clockwise from the previous sector has an invalid distance, set boundary to create a cup like boundary
uint8_t prev_sector_ccw = (prev_sector == 0) ? PROXIMITY_NUM_SECTORS - 1 : prev_sector - 1;
if (!_distance_valid[prev_sector_ccw][layer]) {
_boundary_points[prev_sector_ccw][layer] = _sector_edge_vector[prev_sector_ccw][layer] * shortest_distance;
if (!_distance_valid[layer][prev_sector_ccw]) {
_boundary_points[layer][prev_sector_ccw] = _sector_edge_vector[layer][prev_sector_ccw] * shortest_distance;
}
}
// Reset this location, specified by Boundary_Location object, back to default
// i.e Distance is marked as not-valid, and set to a large number.
void AP_Proximity_Boundary_3D::reset_sector(const Boundary_Location& bnd_loc)
// update middle layer boundary points
void AP_Proximity_Boundary_3D::update_middle_boundary()
{
_distance[bnd_loc.sector][bnd_loc.stack] = DISTANCE_MAX;
_distance_valid[bnd_loc.sector][bnd_loc.stack] = false;
for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) {
update_boundary(Face(PROXIMITY_MIDDLE_LAYER, sector));
}
}
// Reset all horizontal sectors
// i.e Distance is marked as not-valid, and set to a large number for all horizontal sectors.
void AP_Proximity_Boundary_3D::reset_all_horizontal_sectors()
// reset boundary. marks all distances as invalid
void AP_Proximity_Boundary_3D::reset()
{
for (uint8_t i=0; i < PROXIMITY_NUM_SECTORS; i++) {
const Boundary_Location bnd_loc{i};
reset_sector(bnd_loc);
for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) {
for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) {
_distance_valid[layer][sector] = false;
}
}
}
// Reset all stacks and sectors
// i.e Distance is marked as not-valid, and set to a large number for all stacks and sectors.
void AP_Proximity_Boundary_3D::reset_all_sectors_and_stacks()
// Reset this location, specified by Face object, back to default
// i.e Distance is marked as not-valid, and set to a large number.
void AP_Proximity_Boundary_3D::reset_face(Face face)
{
for (uint8_t j=0; j < PROXIMITY_NUM_LAYERS; j++) {
for (uint8_t i=0; i < PROXIMITY_NUM_SECTORS; i++) {
const Boundary_Location bnd_loc{i, j};
reset_sector(bnd_loc);
if (!face.valid()) {
return;
}
_distance_valid[face.layer][face.sector] = false;
// update simple avoidance boundary
update_boundary(face);
}
// get distance for a face. returns true on success and fills in distance argument with distance in meters
bool AP_Proximity_Boundary_3D::get_distance(Face face, float &distance) const
{
if (!face.valid()) {
return false;
}
if (_distance_valid[face.layer][face.sector]) {
distance = _distance[face.layer][face.sector];
return true;
}
return false;
}
// get the total number of obstacles
// this method iterates through the entire 3-D boundary and checks which layer has atleast one valid distance
// this method iterates through the entire 3-D boundary and checks which layer has at least one valid distance
uint8_t AP_Proximity_Boundary_3D::get_obstacle_count()
{
uint8_t obstacle_count = 0;
// reset entire array to false
memset(_active_layer, 0, sizeof(_active_layer));
// check if this layer has atleast one valid sector
for (uint8_t j=0; j<PROXIMITY_NUM_LAYERS; j++) {
for (uint8_t i=0; i<PROXIMITY_NUM_SECTORS; i++ ) {
if (_distance_valid[i][j]) {
_active_layer[j] = true;
for (uint8_t layer=0; layer<PROXIMITY_NUM_LAYERS; layer++) {
for (uint8_t sector=0; sector<PROXIMITY_NUM_SECTORS; sector++ ) {
if (_distance_valid[layer][sector]) {
_active_layer[layer] = true;
obstacle_count += PROXIMITY_NUM_SECTORS;
break;
}
@ -156,60 +187,60 @@ uint8_t AP_Proximity_Boundary_3D::get_obstacle_count() @@ -156,60 +187,60 @@ uint8_t AP_Proximity_Boundary_3D::get_obstacle_count()
return obstacle_count;
}
// Converts obstacle_num passed from avoidance library into appropriate stack and sector
// Converts obstacle_num passed from avoidance library into appropriate layer and sector
// This is packed into a Boundary Location object and returned
boundary_location AP_Proximity_Boundary_3D::convert_obstacle_num_to_boundary_loc(uint8_t obstacle_num) const
AP_Proximity_Boundary_3D::Face AP_Proximity_Boundary_3D::convert_obstacle_num_to_face(uint8_t obstacle_num) const
{
const uint8_t active_layer = obstacle_num / PROXIMITY_NUM_SECTORS;
uint8_t layer_count = 0;
uint8_t stack = 0;
uint8_t layer = 0;
for (uint8_t i=0; i < PROXIMITY_NUM_LAYERS; i++) {
if (_active_layer[i]) {
layer_count++;
}
if (layer_count == (active_layer + 1)) {
stack = i;
layer = i;
break;
}
}
const uint8_t sector = obstacle_num % PROXIMITY_NUM_SECTORS;
return boundary_location{sector, stack};
return AP_Proximity_Boundary_3D::Face(layer, sector);
}
// WARNING: This requires get_obstacle_count() to be called before calling this method
// Appropriate stack and sector are found from the passed obstacle_num
// This function then draws a line between this sector, and sector + 1 at the given stack
// Appropriate layer and sector are found from the passed obstacle_num
// This function then draws a line between this sector, and sector + 1 at the given layer
// Then returns the closest point on this line from vehicle, in body-frame.
// Used by GPS based Simple Avoidance
void AP_Proximity_Boundary_3D::get_obstacle(uint8_t obstacle_num, Vector3f& vec_to_obstacle) const
{
const boundary_location bnd_loc = convert_obstacle_num_to_boundary_loc(obstacle_num);
const uint8_t sector_end = bnd_loc.sector;
uint8_t sector_start = bnd_loc.sector + 1;
const AP_Proximity_Boundary_3D::Face face = convert_obstacle_num_to_face(obstacle_num);
const uint8_t sector_end = face.sector;
uint8_t sector_start = face.sector + 1;
if (sector_start >= PROXIMITY_NUM_SECTORS) {
sector_start = 0;
}
const Vector3f start = _boundary_points[sector_start][bnd_loc.stack];
const Vector3f end = _boundary_points[sector_end][bnd_loc.stack];
const Vector3f start = _boundary_points[face.layer][sector_start];
const Vector3f end = _boundary_points[face.layer][sector_end];
vec_to_obstacle = Vector3f::closest_point_between_line_and_point(start, end, Vector3f{0.0f, 0.0f, 0.0f});
}
// WARNING: This requires get_obstacle_count() to be called before calling this method
// Appropriate stack and sector are found from the passed obstacle_num
// This function then draws a line between this sector, and sector + 1 at the given stack
// Appropriate layer and sector are found from the passed obstacle_num
// This function then draws a line between this sector, and sector + 1 at the given layer
// Then returns the closest point on this line from the segment that was passed, in body-frame.
// Used by GPS based Simple Avoidance - for "brake mode"
float AP_Proximity_Boundary_3D::distance_to_obstacle(uint8_t obstacle_num, const Vector3f& seg_start, const Vector3f& seg_end, Vector3f& closest_point) const
{
const boundary_location bnd_loc = convert_obstacle_num_to_boundary_loc(obstacle_num);
const uint8_t sector_end = bnd_loc.sector;
uint8_t sector_start = bnd_loc.sector + 1;
const AP_Proximity_Boundary_3D::Face face = convert_obstacle_num_to_face(obstacle_num);
const uint8_t sector_end = face.sector;
uint8_t sector_start = face.sector + 1;
if (sector_start >= PROXIMITY_NUM_SECTORS) {
sector_start = 0;
}
const Vector3f start = _boundary_points[sector_start][bnd_loc.stack];
const Vector3f end = _boundary_points[sector_end][bnd_loc.stack];
const Vector3f start = _boundary_points[face.layer][sector_start];
const Vector3f end = _boundary_points[face.layer][sector_end];
return Vector3f::segment_to_segment_dist(seg_start, seg_end, start, end, closest_point);
}
@ -217,30 +248,30 @@ float AP_Proximity_Boundary_3D::distance_to_obstacle(uint8_t obstacle_num, const @@ -217,30 +248,30 @@ float AP_Proximity_Boundary_3D::distance_to_obstacle(uint8_t obstacle_num, const
// returns true on success, false if no valid readings
bool AP_Proximity_Boundary_3D::get_closest_object(float& angle_deg, float &distance) const
{
bool sector_found = false;
uint8_t sector = 0;
uint8_t stack = 0;
bool closest_found = false;
uint8_t closest_sector = 0;
uint8_t closest_layer = 0;
// check boundary for shortest distance
// only check for middle layers and higher
// lower layers might contain ground, which will give false pre-arm failure
for (uint8_t j=PROXIMITY_MIDDLE_LAYER; j<PROXIMITY_NUM_LAYERS; j++) {
for (uint8_t i=0; i<PROXIMITY_NUM_SECTORS; i++) {
if (_distance_valid[i][j]) {
if (!sector_found || (_distance[i][j] < _distance[sector][stack])) {
sector = i;
stack = j;
sector_found = true;
for (uint8_t layer=PROXIMITY_MIDDLE_LAYER; layer<PROXIMITY_NUM_LAYERS; layer++) {
for (uint8_t sector=0; sector<PROXIMITY_NUM_SECTORS; sector++) {
if (_distance_valid[layer][sector]) {
if (!closest_found || (_distance[layer][sector] < _distance[closest_layer][closest_sector])) {
closest_layer = layer;
closest_sector = sector;
closest_found = true;
}
}
}
}
if (sector_found) {
angle_deg = _angle[sector][stack];
distance = _distance[sector][stack];
if (closest_found) {
angle_deg = _angle[closest_layer][closest_sector];
distance = _distance[closest_layer][closest_sector];
}
return sector_found;
return closest_found;
}
// get number of objects, used for non-GPS avoidance
@ -253,9 +284,9 @@ uint8_t AP_Proximity_Boundary_3D::get_horizontal_object_count() const @@ -253,9 +284,9 @@ uint8_t AP_Proximity_Boundary_3D::get_horizontal_object_count() const
// returns false if no angle or distance could be returned for some reason
bool AP_Proximity_Boundary_3D::get_horizontal_object_angle_and_distance(uint8_t object_number, float& angle_deg, float &distance) const
{
if (object_number < PROXIMITY_NUM_SECTORS && _distance_valid[object_number][PROXIMITY_MIDDLE_LAYER]) {
angle_deg = _angle[object_number][PROXIMITY_MIDDLE_LAYER];
distance = _distance[object_number][PROXIMITY_MIDDLE_LAYER];
if ((object_number < PROXIMITY_NUM_SECTORS) && _distance_valid[PROXIMITY_MIDDLE_LAYER][object_number]) {
angle_deg = _angle[PROXIMITY_MIDDLE_LAYER][object_number];
distance = _distance[PROXIMITY_MIDDLE_LAYER][object_number];
return true;
}
return false;

115
libraries/AP_Proximity/AP_Proximity_Boundary_3D.h

@ -16,13 +16,12 @@ @@ -16,13 +16,12 @@
#pragma once
#define PROXIMITY_NUM_SECTORS 8 // number of sectors
#define PROXIMITY_NUM_LAYERS 5 // num of stacks in a sector
#define PROXIMITY_MIDDLE_LAYER 2 // middle stack
#define PROXIMITY_PITCH_WIDTH_DEG 30 // width between each stack in degrees
#define PROXIMITY_NUM_LAYERS 5 // num of layers in a sector
#define PROXIMITY_MIDDLE_LAYER 2 // middle layer
#define PROXIMITY_PITCH_WIDTH_DEG 30 // width between each layer in degrees
#define PROXIMITY_SECTOR_WIDTH_DEG 45.0f // width of sectors in degrees
#define PROXIMITY_BOUNDARY_DIST_MIN 0.6f // minimum distance for a boundary point. This ensures the object avoidance code doesn't think we are outside the boundary.
#define PROXIMITY_BOUNDARY_DIST_DEFAULT 100 // if we have no data for a sector, boundary is placed 100m out
#define DISTANCE_MAX 999999.0f // arbritary "large" distance
class AP_Proximity_Boundary_3D
{
@ -30,69 +29,75 @@ public: @@ -30,69 +29,75 @@ public:
// constructor. This incorporates initialisation as well.
AP_Proximity_Boundary_3D();
// This class is used to store the stack and sector as a single packet to access and modify the 3-D boundary
class Boundary_Location
// stores the layer and sector as a single object to access and modify the 3-D boundary
class Face
{
public:
// constructor when both stack and sector are passed
Boundary_Location(uint8_t Sector, uint8_t Stack) { sector = Sector; stack = Stack; }
// constructor defaults to "middle(horizontal) layer" if only sector is passed
Boundary_Location(uint8_t Sector) { sector = Sector; stack = PROXIMITY_MIDDLE_LAYER; }
uint8_t stack; // vertical "steps" on the 3D Boundary
// constructor, invalidate id and distance
Face() { layer = sector = UINT8_MAX; }
Face(uint8_t _layer, uint8_t _sector) { layer = _layer; sector = _sector; }
// return true if face has valid layer and sector values
bool valid() const { return ((layer < PROXIMITY_NUM_LAYERS) && (sector < PROXIMITY_NUM_SECTORS)); }
// comparison operator
bool operator ==(const Face &other) const { return ((layer == other.layer) && (sector == other.sector)); }
bool operator !=(const Face &other) const { return ((layer != other.layer) || (sector != other.sector)); }
uint8_t layer; // vertical "steps" on the 3D Boundary
uint8_t sector; // horizontal "steps" on the 3D Boundary
};
// returns Boundary_Location object consisting of appropriate stack and sector
// corresponding to the yaw and pitch.
// Pitch defaults to zero if only yaw is passed to this method
// Yaw is the horizontal body-frame angle the detected object makes with the vehicle
// Pitch is the vertical body-frame angle the detected object makes with the vehicle
Boundary_Location get_sector(float yaw, float pitch = 0.0f);
// Set the actual body-frame angle(yaw), pitch, and distance of the detected object.
// This method will also mark the sector and stack to be "valid"
// This distance can then be used for Obstacle Avoidance
void set_attributes(const Boundary_Location& bnd_loc, float angle, float pitch, float distance);
// returns face corresponding to the provided yaw and (optionally) pitch
// pitch is the vertical body-frame angle (in degrees) to the obstacle (0=directly ahead, 90 is above the vehicle?)
// yaw is the horizontal body-frame angle (in degrees) to the obstacle (0=directly ahead of the vehicle, 90 is to the right of the vehicle)
Face get_face(float pitch, float yaw) const;
Face get_face(float yaw) const { return get_face(0, yaw); }
// Set the actual body-frame angle(yaw), pitch, and distance of the detected object.
// This method will also mark the sector and stack to be "valid",
// This method will also mark the sector and layer to be "valid",
// This distance can then be used for Obstacle Avoidance
// Assume detected obstacle is horizontal (zero pitch), if no pitch is passed
void set_attributes(const Boundary_Location& bnd_loc, float angle, float distance) { set_attributes(bnd_loc, angle, 0.0f, distance); }
void set_face_attributes(Face face, float pitch, float yaw, float distance);
void set_face_attributes(Face face, float yaw, float distance) { set_face_attributes(face, 0, yaw, distance); }
// update boundary points used for object avoidance based on a single sector and pitch distance changing
// add a distance to the boundary if it is shorter than any other provided distance since the last time the boundary was reset
// pitch and yaw are in degrees, distance is in meters
void add_distance(float pitch, float yaw, float distance);
void add_distance(float yaw, float distance) { add_distance(0, yaw, distance); }
// update boundary points used for simple avoidance based on a single sector and pitch distance changing
// the boundary points lie on the line between sectors meaning two boundary points may be updated based on a single sector's distance changing
// the boundary point is set to the shortest distance found in the two adjacent sectors, this is a conservative boundary around the vehicle
void update_boundary(const Boundary_Location& bnd_loc);
void update_boundary(Face face);
// update middle layer boundary points
void update_middle_boundary();
// reset boundary. marks all distances as invalid
void reset();
// Reset this location, specified by Boundary_Location object, back to default
// Reset this location, specified by Face object, back to default
// i.e Distance is marked as not-valid, and set to a large number.
void reset_sector(const Boundary_Location& bnd_loc);
// Reset all horizontal sectors
void reset_all_horizontal_sectors();
// Reset all stacks and sectors
void reset_all_sectors_and_stacks();
// Get values given the stack and sector as a Boundary_Location object
float get_angle(const Boundary_Location& bnd_loc) const { return _angle[bnd_loc.sector][bnd_loc.stack]; }
float get_pitch(const Boundary_Location& bnd_loc) const { return _pitch[bnd_loc.sector][bnd_loc.stack]; }
float get_distance(const Boundary_Location& bnd_loc) const { return _distance[bnd_loc.sector][bnd_loc.stack]; }
bool check_distance_valid(const Boundary_Location& bnd_loc) const { return _distance_valid[bnd_loc.sector][bnd_loc.stack]; }
void reset_face(Face face);
// get distance for a face. returns true on success and fills in distance argument with distance in meters
bool get_distance(Face face, float &distance) const;
// Get the total number of obstacles
// This method iterates through the entire 3-D boundary and checks which layer has atleast one valid distance
// This method iterates through the entire 3-D boundary and checks which layer has at least one valid distance
uint8_t get_obstacle_count();
// WARNING: This requires get_obstacle_count() to be called before calling this method
// Appropriate stack and sector are found from the passed obstacle_num
// This function then draws a line between this sector, and sector + 1 at the given stack
// Appropriate layer and sector are found from the passed obstacle_num
// This function then draws a line between this sector, and sector + 1 at the given layer
// Then returns the closest point on this line from vehicle, in body-frame.
void get_obstacle(uint8_t obstacle_num, Vector3f& vec_to_boundary) const;
// WARNING: This requires get_obstacle_count() to be called before calling this method
// Appropriate stack and sector are found from the passed obstacle_num
// This function then draws a line between this sector, and sector + 1 at the given stack
// Appropriate layer and sector are found from the passed obstacle_num
// This function then draws a line between this sector, and sector + 1 at the given layer
// Then returns the closest point on this line from the segment that was passed, in body-frame.
// Used by GPS based Simple Avoidance - for "brake mode"
float distance_to_obstacle(uint8_t obstacle_num, const Vector3f& seg_start, const Vector3f& seg_end, Vector3f& closest_point) const;
@ -111,22 +116,20 @@ public: @@ -111,22 +116,20 @@ public:
const int16_t _pitch_middle_deg[PROXIMITY_NUM_LAYERS] {-60, -30, 0, 30, 60};
private:
// initialise the boundary and sector_edge_vector array used for object avoidance
void init_boundary();
void init();
// Converts obstacle_num passed from avoidance library into appropriate stack and sector
// This is packed into a Boundary Location object and returned
Boundary_Location convert_obstacle_num_to_boundary_loc(uint8_t obstacle_num) const;
// Converts obstacle_num passed from avoidance library into appropriate face
Face convert_obstacle_num_to_face(uint8_t obstacle_num) const;
Vector3f _sector_edge_vector[PROXIMITY_NUM_SECTORS][PROXIMITY_NUM_LAYERS];
Vector3f _boundary_points[PROXIMITY_NUM_SECTORS][PROXIMITY_NUM_LAYERS];
Vector3f _sector_edge_vector[PROXIMITY_NUM_LAYERS][PROXIMITY_NUM_SECTORS];
Vector3f _boundary_points[PROXIMITY_NUM_LAYERS][PROXIMITY_NUM_SECTORS];
// sensor data
float _angle[PROXIMITY_NUM_SECTORS][PROXIMITY_NUM_LAYERS]; // angle to closest object within each sector and stack
float _pitch[PROXIMITY_NUM_SECTORS][PROXIMITY_NUM_LAYERS]; // pitch to the closest object within each sector and stack
float _distance[PROXIMITY_NUM_SECTORS][PROXIMITY_NUM_LAYERS]; // distance to closest object within each sector and stack
bool _distance_valid[PROXIMITY_NUM_SECTORS][PROXIMITY_NUM_LAYERS]; // true if a valid distance received for each sector and stack
bool _active_layer[PROXIMITY_NUM_LAYERS]; // layers which have atleast one valid distance are marked true
float _angle[PROXIMITY_NUM_LAYERS][PROXIMITY_NUM_SECTORS]; // yaw angle in degrees to closest object within each sector and layer
float _pitch[PROXIMITY_NUM_LAYERS][PROXIMITY_NUM_SECTORS]; // pitch angle in degrees to the closest object within each sector and layer
float _distance[PROXIMITY_NUM_LAYERS][PROXIMITY_NUM_SECTORS]; // distance to closest object within each sector and layer
bool _distance_valid[PROXIMITY_NUM_LAYERS][PROXIMITY_NUM_SECTORS]; // true if a valid distance received for each sector and layer
bool _active_layer[PROXIMITY_NUM_LAYERS]; // layers which have at least one valid distance are marked true
};
typedef AP_Proximity_Boundary_3D::Boundary_Location boundary_location;

Loading…
Cancel
Save