Iampete1
4 years ago
committed by
Randy Mackay
4 changed files with 396 additions and 0 deletions
@ -0,0 +1,325 @@
@@ -0,0 +1,325 @@
|
||||
/*
|
||||
This program is free software: you can redistribute it and/or modify |
||||
it under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 3 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
This program is distributed in the hope that it will be useful, |
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
GNU General Public License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
|
||||
#ifdef ENABLE_SCRIPTING |
||||
|
||||
#include <AP_HAL/AP_HAL.h> |
||||
#include "AP_MotorsMatrix_6DoF_Scripting.h" |
||||
#include <AP_Vehicle/AP_Vehicle.h> |
||||
|
||||
extern const AP_HAL::HAL& hal; |
||||
|
||||
void AP_MotorsMatrix_6DoF_Scripting::output_to_motors() |
||||
{ |
||||
switch (_spool_state) { |
||||
case SpoolState::SHUT_DOWN: |
||||
case SpoolState::GROUND_IDLE: |
||||
{ |
||||
// no output, cant spin up for ground idle because we don't know which way motors should be spining
|
||||
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
_actuator[i] = 0.0f; |
||||
} |
||||
} |
||||
break; |
||||
} |
||||
case SpoolState::SPOOLING_UP: |
||||
case SpoolState::THROTTLE_UNLIMITED: |
||||
case SpoolState::SPOOLING_DOWN: |
||||
// set motor output based on thrust requests
|
||||
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
if (_reversible[i]) { |
||||
// revesible motor can provide both positive and negative thrust, +- spin max, spin min does not apply
|
||||
if (is_positive(_thrust_rpyt_out[i])) {
|
||||
_actuator[i] = apply_thrust_curve_and_volt_scaling(_thrust_rpyt_out[i]) * _spin_max; |
||||
|
||||
} else if (is_negative(_thrust_rpyt_out[i])) { |
||||
_actuator[i] = -apply_thrust_curve_and_volt_scaling(-_thrust_rpyt_out[i]) * _spin_max; |
||||
|
||||
} else { |
||||
_actuator[i] = 0.0f; |
||||
} |
||||
} else { |
||||
// motor can only provide trust in a single direction, spin min to spin max as 'normal' copter
|
||||
_actuator[i] = thrust_to_actuator(_thrust_rpyt_out[i]); |
||||
} |
||||
} |
||||
} |
||||
break; |
||||
} |
||||
|
||||
// Send to each motor
|
||||
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
SRV_Channels::set_output_scaled(SRV_Channels::get_motor_function(i), _actuator[i] * 4500); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// output_armed - sends commands to the motors
|
||||
void AP_MotorsMatrix_6DoF_Scripting::output_armed_stabilizing() |
||||
{ |
||||
uint8_t i; // general purpose counter
|
||||
float roll_thrust; // roll thrust input value, +/- 1.0
|
||||
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
||||
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
||||
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
|
||||
float forward_thrust; // forward thrust input value, +/- 1.0
|
||||
float right_thrust; // right thrust input value, +/- 1.0
|
||||
|
||||
// note that the throttle, forwards and right inputs are not in bodyframe, they are in the frame of the 'normal' 4DoF copter were pretending to be
|
||||
|
||||
// apply voltage and air pressure compensation
|
||||
const float compensation_gain = get_compensation_gain(); // compensation for battery voltage and altitude
|
||||
roll_thrust = (_roll_in + _roll_in_ff) * compensation_gain; |
||||
pitch_thrust = (_pitch_in + _pitch_in_ff) * compensation_gain; |
||||
yaw_thrust = (_yaw_in + _yaw_in_ff) * compensation_gain; |
||||
throttle_thrust = get_throttle() * compensation_gain; |
||||
|
||||
// scale horizontal thrust with throttle, this mimics a normal copter
|
||||
// so we don't break the lean angle proportional acceleration assumption made by the position controller
|
||||
forward_thrust = get_forward() * throttle_thrust; |
||||
right_thrust = get_lateral() * throttle_thrust; |
||||
|
||||
|
||||
// set throttle limit flags
|
||||
if (throttle_thrust <= 0) { |
||||
throttle_thrust = 0; |
||||
// we cant thrust down, the vehicle can do it, but it would break a lot of assumptions further up the control stack
|
||||
// 1G decent probably plenty anyway....
|
||||
limit.throttle_lower = true; |
||||
} |
||||
if (throttle_thrust >= 1) { |
||||
throttle_thrust = 1; |
||||
limit.throttle_upper = true; |
||||
} |
||||
|
||||
// rotate the thrust into bodyframe
|
||||
Matrix3f rot; |
||||
Vector3f thrust_vec; |
||||
rot.from_euler312(_roll_offset, _pitch_offset, 0.0f); |
||||
|
||||
|
||||
/*
|
||||
upwards thrust, independent of orientation |
||||
*/ |
||||
thrust_vec.x = 0.0f; |
||||
thrust_vec.y = 0.0f; |
||||
thrust_vec.z = throttle_thrust; |
||||
thrust_vec = rot * thrust_vec; |
||||
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
_thrust_rpyt_out[i] = thrust_vec.x * _forward_factor[i]; |
||||
_thrust_rpyt_out[i] += thrust_vec.y * _right_factor[i]; |
||||
_thrust_rpyt_out[i] += thrust_vec.z * _throttle_factor[i]; |
||||
|
||||
if (fabsf(_thrust_rpyt_out[i]) >= 1) { |
||||
// if we hit this the mixer is probably scaled incorrectly
|
||||
limit.throttle_upper = true; |
||||
} |
||||
_thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i],-1.0f,1.0f); |
||||
} |
||||
} |
||||
|
||||
|
||||
/*
|
||||
rotations: roll, pitch and yaw |
||||
*/ |
||||
float rpy_ratio = 1.0f; // scale factor, output will be scaled by this ratio so it can all fit evenly
|
||||
float thrust[AP_MOTORS_MAX_NUM_MOTORS]; |
||||
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
thrust[i] = roll_thrust * _roll_factor[i]; |
||||
thrust[i] += pitch_thrust * _pitch_factor[i]; |
||||
thrust[i] += yaw_thrust * _yaw_factor[i]; |
||||
float total_thrust = _thrust_rpyt_out[i] + thrust[i]; |
||||
// control input will be limited by motor range
|
||||
if (total_thrust > 1.0f) { |
||||
rpy_ratio = MIN(rpy_ratio,(1.0f - _thrust_rpyt_out[i]) / thrust[i]); |
||||
} else if (total_thrust < -1.0f) { |
||||
rpy_ratio = MIN(rpy_ratio,(-1.0f -_thrust_rpyt_out[i]) / thrust[i]); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// set limit flags if output is being scaled
|
||||
if (rpy_ratio < 1) { |
||||
limit.roll = true; |
||||
limit.pitch = true; |
||||
limit.yaw = true; |
||||
} |
||||
|
||||
// scale back rotations evenly so it will all fit
|
||||
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
_thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i] + thrust[i] * rpy_ratio,-1.0f,1.0f); |
||||
} |
||||
} |
||||
|
||||
/*
|
||||
forward and lateral, independent of orentaiton |
||||
*/ |
||||
thrust_vec.x = forward_thrust; |
||||
thrust_vec.y = right_thrust; |
||||
thrust_vec.z = 0.0f; |
||||
thrust_vec = rot * thrust_vec; |
||||
|
||||
float horz_ratio = 1.0f;
|
||||
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
thrust[i] = thrust_vec.x * _forward_factor[i]; |
||||
thrust[i] += thrust_vec.y * _right_factor[i]; |
||||
thrust[i] += thrust_vec.z * _throttle_factor[i]; |
||||
float total_thrust = _thrust_rpyt_out[i] + thrust[i]; |
||||
// control input will be limited by motor range
|
||||
if (total_thrust > 1.0f) { |
||||
horz_ratio = MIN(horz_ratio,(1.0f - _thrust_rpyt_out[i]) / thrust[i]); |
||||
} else if (total_thrust < -1.0f) { |
||||
horz_ratio = MIN(horz_ratio,(-1.0f -_thrust_rpyt_out[i]) / thrust[i]); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// scale back evenly so it will all fit
|
||||
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
_thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i] + thrust[i] * horz_ratio,-1.0f,1.0f); |
||||
} |
||||
} |
||||
|
||||
/*
|
||||
apply deadzone to revesible motors, this stops motors from reversing direction too often |
||||
re-use yaw headroom param for deadzone, constain to a max of 25% |
||||
*/ |
||||
const float deadzone = constrain_float(_yaw_headroom.get() * 0.001f,0.0f,0.25f); |
||||
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i] && _reversible[i]) { |
||||
if (is_negative(_thrust_rpyt_out[i])) { |
||||
if ((_thrust_rpyt_out[i] > -deadzone) && is_positive(_last_thrust_out[i])) { |
||||
_thrust_rpyt_out[i] = 0.0f; |
||||
} else { |
||||
_last_thrust_out[i] = _thrust_rpyt_out[i]; |
||||
} |
||||
} else if (is_positive(_thrust_rpyt_out[i])) { |
||||
if ((_thrust_rpyt_out[i] < deadzone) && is_negative(_last_thrust_out[i])) { |
||||
_thrust_rpyt_out[i] = 0.0f; |
||||
} else { |
||||
_last_thrust_out[i] = _thrust_rpyt_out[i]; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
} |
||||
|
||||
// sets the roll and pitch offset, this rotates the thrust vector in body frame
|
||||
// these are typically set such that the throttle thrust vector is earth frame up
|
||||
void AP_MotorsMatrix_6DoF_Scripting::set_roll_pitch(float roll_deg, float pitch_deg) |
||||
{ |
||||
_roll_offset = radians(roll_deg); |
||||
_pitch_offset = radians(pitch_deg); |
||||
} |
||||
|
||||
// add_motor, take roll, pitch, yaw, throttle(up), forward, right factors along with a bool if the motor is reversible and the testing order, called from scripting
|
||||
void AP_MotorsMatrix_6DoF_Scripting::add_motor(int8_t motor_num, float roll_factor, float pitch_factor, float yaw_factor, float throttle_factor, float forward_factor, float right_factor, bool reversible, uint8_t testing_order) |
||||
{ |
||||
if (initialised_ok()) { |
||||
// don't allow matrix to be changed after init
|
||||
return; |
||||
} |
||||
|
||||
// ensure valid motor number is provided
|
||||
if (motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS) { |
||||
motor_enabled[motor_num] = true; |
||||
|
||||
_roll_factor[motor_num] = roll_factor; |
||||
_pitch_factor[motor_num] = pitch_factor; |
||||
_yaw_factor[motor_num] = yaw_factor; |
||||
|
||||
_throttle_factor[motor_num] = throttle_factor; |
||||
_forward_factor[motor_num] = forward_factor; |
||||
_right_factor[motor_num] = right_factor; |
||||
|
||||
// set order that motor appears in test
|
||||
_test_order[motor_num] = testing_order; |
||||
|
||||
// ensure valid motor number is provided
|
||||
SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(motor_num); |
||||
SRV_Channels::set_aux_channel_default(function, motor_num); |
||||
|
||||
uint8_t chan; |
||||
if (!SRV_Channels::find_channel(function, chan)) { |
||||
gcs().send_text(MAV_SEVERITY_ERROR, "Motors: unable to setup motor %u", motor_num); |
||||
return; |
||||
} |
||||
|
||||
_reversible[motor_num] = reversible; |
||||
if (_reversible[motor_num]) { |
||||
// reversible, set to angle type hard code trim to 1500
|
||||
SRV_Channels::set_angle(function, 4500); |
||||
SRV_Channels::set_trim_to_pwm_for(function, 1500); |
||||
} else { |
||||
SRV_Channels::set_range(function, 4500); |
||||
} |
||||
SRV_Channels::set_output_min_max(function, get_pwm_output_min(), get_pwm_output_max()); |
||||
} |
||||
} |
||||
|
||||
bool AP_MotorsMatrix_6DoF_Scripting::init(uint8_t expected_num_motors) { |
||||
uint8_t num_motors = 0; |
||||
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
num_motors++; |
||||
} |
||||
} |
||||
|
||||
set_initialised_ok(expected_num_motors == num_motors); |
||||
|
||||
if (!initialised_ok()) { |
||||
_mav_type = MAV_TYPE_GENERIC; |
||||
return false; |
||||
} |
||||
|
||||
switch (num_motors) { |
||||
case 3: |
||||
_mav_type = MAV_TYPE_TRICOPTER; |
||||
break; |
||||
case 4: |
||||
_mav_type = MAV_TYPE_QUADROTOR; |
||||
break; |
||||
case 6: |
||||
_mav_type = MAV_TYPE_HEXAROTOR; |
||||
break; |
||||
case 8: |
||||
_mav_type = MAV_TYPE_OCTOROTOR; |
||||
break; |
||||
case 10: |
||||
_mav_type = MAV_TYPE_DECAROTOR; |
||||
break; |
||||
case 12: |
||||
_mav_type = MAV_TYPE_DODECAROTOR; |
||||
break; |
||||
default: |
||||
_mav_type = MAV_TYPE_GENERIC; |
||||
} |
||||
|
||||
return true; |
||||
} |
||||
|
||||
// singleton instance
|
||||
AP_MotorsMatrix_6DoF_Scripting *AP_MotorsMatrix_6DoF_Scripting::_singleton; |
||||
|
||||
#endif // ENABLE_SCRIPTING
|
@ -0,0 +1,66 @@
@@ -0,0 +1,66 @@
|
||||
#pragma once |
||||
#ifdef ENABLE_SCRIPTING |
||||
|
||||
#include <AP_Common/AP_Common.h> |
||||
#include <AP_Math/AP_Math.h> |
||||
#include <RC_Channel/RC_Channel.h> |
||||
#include "AP_MotorsMatrix.h" |
||||
|
||||
class AP_MotorsMatrix_6DoF_Scripting : public AP_MotorsMatrix { |
||||
public: |
||||
|
||||
/// Constructor
|
||||
AP_MotorsMatrix_6DoF_Scripting(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) : |
||||
AP_MotorsMatrix(loop_rate, speed_hz) |
||||
{ |
||||
if (_singleton != nullptr) { |
||||
AP_HAL::panic("AP_MotorsMatrix 6DoF must be singleton"); |
||||
} |
||||
_singleton = this; |
||||
}; |
||||
|
||||
// get singleton instance
|
||||
static AP_MotorsMatrix_6DoF_Scripting *get_singleton() { |
||||
return _singleton; |
||||
} |
||||
|
||||
// output_to_motors - sends minimum values out to the motors
|
||||
void output_to_motors() override; |
||||
|
||||
// sets the roll and pitch offset, this rotates the thrust vector in body frame
|
||||
// these are typically set such that the throttle thrust vector is earth frame up
|
||||
void set_roll_pitch(float roll_deg, float pitch_deg) override; |
||||
|
||||
// add_motor using raw roll, pitch, throttle and yaw factors, to be called from scripting
|
||||
void add_motor(int8_t motor_num, float roll_factor, float pitch_factor, float yaw_factor, float throttle_factor, float forward_factor, float right_factor, bool reversible, uint8_t testing_order); |
||||
|
||||
// if the expected number of motors have been setup then set as initalized
|
||||
bool init(uint8_t expected_num_motors) override; |
||||
|
||||
protected: |
||||
// output - sends commands to the motors
|
||||
void output_armed_stabilizing() override; |
||||
|
||||
// nothing to do for setup, scripting will mark as initalized when done
|
||||
void setup_motors(motor_frame_class frame_class, motor_frame_type frame_type) override {}; |
||||
|
||||
float _throttle_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to up thrust
|
||||
float _forward_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to forward thrust
|
||||
float _right_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to right thrust
|
||||
|
||||
// true if motor is revesible, it can go from -Spin max to +Spin max, if false motor is can go from Spin min to Spin max
|
||||
bool _reversible[AP_MOTORS_MAX_NUM_MOTORS]; |
||||
|
||||
// store last values to allow deadzone
|
||||
float _last_thrust_out[AP_MOTORS_MAX_NUM_MOTORS]; |
||||
|
||||
// Current offset angles, radians
|
||||
float _roll_offset; |
||||
float _pitch_offset; |
||||
|
||||
private: |
||||
static AP_MotorsMatrix_6DoF_Scripting *_singleton; |
||||
|
||||
}; |
||||
|
||||
#endif // ENABLE_SCRIPTING
|
Loading…
Reference in new issue