|
|
|
@ -27,30 +27,31 @@ void Variometer::update(const float polar_K, const float polar_B, const float po
@@ -27,30 +27,31 @@ void Variometer::update(const float polar_K, const float polar_B, const float po
|
|
|
|
|
// take 5 point moving average
|
|
|
|
|
float dsp = _vdot_filter.apply(temp); |
|
|
|
|
|
|
|
|
|
Vector3f velned; |
|
|
|
|
if (_ahrs.get_velocity_NED(velned)) { |
|
|
|
|
// if possible use the EKF vertical velocity
|
|
|
|
|
raw_climb_rate = -velned.z; |
|
|
|
|
} |
|
|
|
|
smoothed_climb_rate = _climb_filter.apply(raw_climb_rate, (AP_HAL::micros64() - _prev_update_time)/1e6); |
|
|
|
|
|
|
|
|
|
float aspd = 0; |
|
|
|
|
if (!_ahrs.airspeed_estimate(aspd)) { |
|
|
|
|
aspd = _aparm.airspeed_cruise_cm / 100.0f; |
|
|
|
|
} |
|
|
|
|
_aspd_filt = _sp_filter.apply(aspd); |
|
|
|
|
|
|
|
|
|
float roll = _ahrs.roll; |
|
|
|
|
|
|
|
|
|
// Constrained airspeed.
|
|
|
|
|
const float minV = sqrt(polar_K/1.5); |
|
|
|
|
float aspd_filt_constrained = _aspd_filt>minV ? _aspd_filt : minV; |
|
|
|
|
_aspd_filt_constrained = _aspd_filt>minV ? _aspd_filt : minV; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vector3f velned; |
|
|
|
|
if (_ahrs.get_velocity_NED(velned)) { |
|
|
|
|
// if possible use the EKF vertical velocity
|
|
|
|
|
raw_climb_rate = -velned.z; |
|
|
|
|
} |
|
|
|
|
float tau = calculate_circling_time_constant(); |
|
|
|
|
_climb_filter.set_cutoff_frequency(1/tau); |
|
|
|
|
smoothed_climb_rate = _climb_filter.apply(raw_climb_rate, (AP_HAL::micros64() - _prev_update_time)/1e6); |
|
|
|
|
|
|
|
|
|
// Compute still-air sinkrate
|
|
|
|
|
float sinkrate = correct_netto_rate(0.0f, roll, aspd_filt_constrained, polar_K, polar_Cd0, polar_B); |
|
|
|
|
float roll = _ahrs.roll; |
|
|
|
|
float sinkrate = correct_netto_rate(0.0f, roll, _aspd_filt_constrained, polar_K, polar_Cd0, polar_B); |
|
|
|
|
|
|
|
|
|
reading = raw_climb_rate + dsp*aspd_filt_constrained/GRAVITY_MSS + sinkrate; |
|
|
|
|
reading = raw_climb_rate + dsp*_aspd_filt_constrained/GRAVITY_MSS + sinkrate; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
filtered_reading = TE_FILT * reading + (1 - TE_FILT) * filtered_reading; // Apply low pass timeconst filter for noise
|
|
|
|
@ -61,7 +62,7 @@ void Variometer::update(const float polar_K, const float polar_B, const float po
@@ -61,7 +62,7 @@ void Variometer::update(const float polar_K, const float polar_B, const float po
|
|
|
|
|
AP::logger().Write("VAR", "TimeUS,aspd_raw,aspd_filt,alt,roll,raw,filt,cl,fc", "Qffffffff", |
|
|
|
|
AP_HAL::micros64(), |
|
|
|
|
(double)0.0, |
|
|
|
|
(double)aspd_filt_constrained, |
|
|
|
|
(double)_aspd_filt_constrained, |
|
|
|
|
(double)alt, |
|
|
|
|
(double)roll, |
|
|
|
|
(double)reading, |
|
|
|
@ -69,8 +70,8 @@ void Variometer::update(const float polar_K, const float polar_B, const float po
@@ -69,8 +70,8 @@ void Variometer::update(const float polar_K, const float polar_B, const float po
|
|
|
|
|
(double)raw_climb_rate, |
|
|
|
|
(double)smoothed_climb_rate); |
|
|
|
|
|
|
|
|
|
float expected_roll = asinf(constrain_float(powf(aspd_filt_constrained,2)/(GRAVITY_MSS*_aparm.loiter_radius),-1.0, 1.0)); |
|
|
|
|
_expected_thermalling_sink = correct_netto_rate(0.0, expected_roll, aspd_filt_constrained, polar_K, polar_Cd0, polar_B); |
|
|
|
|
float expected_roll = asinf(constrain_float(powf(_aspd_filt_constrained,2)/(GRAVITY_MSS*_aparm.loiter_radius),-1.0, 1.0)); |
|
|
|
|
_expected_thermalling_sink = correct_netto_rate(0.0, expected_roll, _aspd_filt_constrained, polar_K, polar_Cd0, polar_B); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -102,3 +103,13 @@ float Variometer::correct_netto_rate(float climb_rate,
@@ -102,3 +103,13 @@ float Variometer::correct_netto_rate(float climb_rate,
|
|
|
|
|
//gcs().send_text(MAV_SEVERITY_INFO, "%f %f %f %f",temp_netto,dVdt,netto_rate,barometer.get_altitude());
|
|
|
|
|
return netto_rate; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float Variometer::calculate_circling_time_constant() |
|
|
|
|
{ |
|
|
|
|
// Calculate a time constant to use to filter quantities over a full thermal orbit.
|
|
|
|
|
// This is used for rejecting variation in e.g. climb rate, or estimated climb rate
|
|
|
|
|
// potential, as the aircraft orbits the thermal.
|
|
|
|
|
// Use the time to circle - variations at the circling frequency then have a gain of 25%
|
|
|
|
|
// and the response to a step input will reach 64% of final value in three orbits.
|
|
|
|
|
return 3*_aparm.loiter_radius*2*M_PI/_aspd_filt_constrained; |
|
|
|
|
} |
|
|
|
|