2 changed files with 753 additions and 732 deletions
@ -0,0 +1,753 @@
@@ -0,0 +1,753 @@
|
||||
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
/*
|
||||
This program is free software: you can redistribute it and/or modify |
||||
it under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 3 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
This program is distributed in the hope that it will be useful, |
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
GNU General Public License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
/*
|
||||
main logic for servo control |
||||
*/ |
||||
|
||||
#include "Plane.h" |
||||
|
||||
|
||||
/*****************************************
|
||||
* Throttle slew limit |
||||
*****************************************/ |
||||
void Plane::throttle_slew_limit(int16_t last_throttle) |
||||
{ |
||||
uint8_t slewrate = aparm.throttle_slewrate; |
||||
if (control_mode==AUTO) { |
||||
if (auto_state.takeoff_complete == false && g.takeoff_throttle_slewrate != 0) { |
||||
slewrate = g.takeoff_throttle_slewrate; |
||||
} else if (g.land_throttle_slewrate != 0 && |
||||
(flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_PREFLARE)) { |
||||
slewrate = g.land_throttle_slewrate; |
||||
} |
||||
} |
||||
// if slew limit rate is set to zero then do not slew limit
|
||||
if (slewrate) {
|
||||
// limit throttle change by the given percentage per second
|
||||
float temp = slewrate * G_Dt * 0.01f * fabsf(channel_throttle->get_radio_max() - channel_throttle->get_radio_min()); |
||||
// allow a minimum change of 1 PWM per cycle
|
||||
if (temp < 1) { |
||||
temp = 1; |
||||
} |
||||
channel_throttle->set_radio_out(constrain_int16(channel_throttle->get_radio_out(), last_throttle - temp, last_throttle + temp)); |
||||
} |
||||
} |
||||
|
||||
/*****************************************
|
||||
Flap slew limit |
||||
*****************************************/ |
||||
void Plane::flap_slew_limit(int8_t &last_value, int8_t &new_value) |
||||
{ |
||||
uint8_t slewrate = g.flap_slewrate; |
||||
// if slew limit rate is set to zero then do not slew limit
|
||||
if (slewrate) {
|
||||
// limit flap change by the given percentage per second
|
||||
float temp = slewrate * G_Dt; |
||||
// allow a minimum change of 1% per cycle. This means the
|
||||
// slowest flaps we can do is full change over 2 seconds
|
||||
if (temp < 1) { |
||||
temp = 1; |
||||
} |
||||
new_value = constrain_int16(new_value, last_value - temp, last_value + temp); |
||||
} |
||||
last_value = new_value; |
||||
} |
||||
|
||||
/* We want to suppress the throttle if we think we are on the ground and in an autopilot controlled throttle mode.
|
||||
|
||||
Disable throttle if following conditions are met: |
||||
* 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher |
||||
* AND |
||||
* 2 - Our reported altitude is within 10 meters of the home altitude. |
||||
* 3 - Our reported speed is under 5 meters per second. |
||||
* 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached |
||||
* OR |
||||
* 5 - Home location is not set |
||||
*/ |
||||
bool Plane::suppress_throttle(void) |
||||
{ |
||||
#if PARACHUTE == ENABLED |
||||
if (auto_throttle_mode && parachute.release_initiated()) { |
||||
// throttle always suppressed in auto-throttle modes after parachute release initiated
|
||||
throttle_suppressed = true; |
||||
return true; |
||||
} |
||||
#endif |
||||
|
||||
if (!throttle_suppressed) { |
||||
// we've previously met a condition for unsupressing the throttle
|
||||
return false; |
||||
} |
||||
if (!auto_throttle_mode) { |
||||
// the user controls the throttle
|
||||
throttle_suppressed = false; |
||||
return false; |
||||
} |
||||
|
||||
if (control_mode==AUTO && g.auto_fbw_steer == 42) { |
||||
// user has throttle control
|
||||
return false; |
||||
} |
||||
|
||||
bool gps_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_2D && gps.ground_speed() >= 5); |
||||
|
||||
if (control_mode==AUTO &&
|
||||
auto_state.takeoff_complete == false) { |
||||
|
||||
uint32_t launch_duration_ms = ((int32_t)g.takeoff_throttle_delay)*100 + 2000; |
||||
if (is_flying() && |
||||
millis() - started_flying_ms > MAX(launch_duration_ms, 5000U) && // been flying >5s in any mode
|
||||
adjusted_relative_altitude_cm() > 500 && // are >5m above AGL/home
|
||||
labs(ahrs.pitch_sensor) < 3000 && // not high pitch, which happens when held before launch
|
||||
gps_movement) { // definite gps movement
|
||||
// we're already flying, do not suppress the throttle. We can get
|
||||
// stuck in this condition if we reset a mission and cmd 1 is takeoff
|
||||
// but we're currently flying around below the takeoff altitude
|
||||
throttle_suppressed = false; |
||||
return false; |
||||
} |
||||
if (auto_takeoff_check()) { |
||||
// we're in auto takeoff
|
||||
throttle_suppressed = false; |
||||
auto_state.baro_takeoff_alt = barometer.get_altitude(); |
||||
return false; |
||||
} |
||||
// keep throttle suppressed
|
||||
return true; |
||||
} |
||||
|
||||
if (relative_altitude_abs_cm() >= 1000) { |
||||
// we're more than 10m from the home altitude
|
||||
throttle_suppressed = false; |
||||
return false; |
||||
} |
||||
|
||||
if (gps_movement) { |
||||
// if we have an airspeed sensor, then check it too, and
|
||||
// require 5m/s. This prevents throttle up due to spiky GPS
|
||||
// groundspeed with bad GPS reception
|
||||
if ((!ahrs.airspeed_sensor_enabled()) || airspeed.get_airspeed() >= 5) { |
||||
// we're moving at more than 5 m/s
|
||||
throttle_suppressed = false; |
||||
return false;
|
||||
} |
||||
} |
||||
|
||||
if (quadplane.is_flying()) { |
||||
throttle_suppressed = false; |
||||
} |
||||
|
||||
// throttle remains suppressed
|
||||
return true; |
||||
} |
||||
|
||||
/*
|
||||
implement a software VTail or elevon mixer. There are 4 different mixing modes |
||||
*/ |
||||
void Plane::channel_output_mixer(uint8_t mixing_type, int16_t & chan1_out, int16_t & chan2_out)const |
||||
{ |
||||
int16_t c1, c2; |
||||
int16_t v1, v2; |
||||
|
||||
// first get desired elevator and rudder as -500..500 values
|
||||
c1 = chan1_out - 1500; |
||||
c2 = chan2_out - 1500; |
||||
|
||||
// apply MIXING_OFFSET to input channels using long-integer version
|
||||
// of formula: x = x * (g.mixing_offset/100.0 + 1.0)
|
||||
// -100 => 2x on 'c1', 100 => 2x on 'c2'
|
||||
if (g.mixing_offset < 0) { |
||||
c1 = (int16_t)(((int32_t)c1) * (-g.mixing_offset+100) / 100); |
||||
} else if (g.mixing_offset > 0) { |
||||
c2 = (int16_t)(((int32_t)c2) * (g.mixing_offset+100) / 100); |
||||
} |
||||
|
||||
v1 = (c1 - c2) * g.mixing_gain; |
||||
v2 = (c1 + c2) * g.mixing_gain; |
||||
|
||||
// now map to mixed output
|
||||
switch (mixing_type) { |
||||
case MIXING_DISABLED: |
||||
return; |
||||
|
||||
case MIXING_UPUP: |
||||
break; |
||||
|
||||
case MIXING_UPDN: |
||||
v2 = -v2; |
||||
break; |
||||
|
||||
case MIXING_DNUP: |
||||
v1 = -v1; |
||||
break; |
||||
|
||||
case MIXING_DNDN: |
||||
v1 = -v1; |
||||
v2 = -v2; |
||||
break; |
||||
|
||||
case MIXING_UPUP_SWP: |
||||
std::swap(v1, v2); |
||||
break; |
||||
|
||||
case MIXING_UPDN_SWP: |
||||
v2 = -v2; |
||||
std::swap(v1, v2);
|
||||
break; |
||||
|
||||
case MIXING_DNUP_SWP: |
||||
v1 = -v1; |
||||
std::swap(v1, v2);
|
||||
break; |
||||
|
||||
case MIXING_DNDN_SWP: |
||||
v1 = -v1; |
||||
v2 = -v2; |
||||
std::swap(v1, v2);
|
||||
break; |
||||
} |
||||
|
||||
// scale for a 1500 center and 900..2100 range, symmetric
|
||||
v1 = constrain_int16(v1, -600, 600); |
||||
v2 = constrain_int16(v2, -600, 600); |
||||
|
||||
chan1_out = 1500 + v1; |
||||
chan2_out = 1500 + v2; |
||||
} |
||||
|
||||
void Plane::channel_output_mixer(uint8_t mixing_type, RC_Channel* chan1, RC_Channel* chan2)const |
||||
{ |
||||
int16_t ch1 = chan1->get_radio_out(); |
||||
int16_t ch2 = chan2->get_radio_out(); |
||||
|
||||
channel_output_mixer(mixing_type,ch1,ch2); |
||||
|
||||
chan1->set_radio_out(ch1); |
||||
chan2->set_radio_out(ch2); |
||||
} |
||||
|
||||
/*
|
||||
setup flaperon output channels |
||||
*/ |
||||
void Plane::flaperon_update(int8_t flap_percent) |
||||
{ |
||||
if (!RC_Channel_aux::function_assigned(RC_Channel_aux::k_flaperon1) || |
||||
!RC_Channel_aux::function_assigned(RC_Channel_aux::k_flaperon2)) { |
||||
return; |
||||
} |
||||
int16_t ch1, ch2; |
||||
/*
|
||||
flaperons are implemented as a mixer between aileron and a |
||||
percentage of flaps. Flap input can come from a manual channel |
||||
or from auto flaps. |
||||
|
||||
Use k_flaperon1 and k_flaperon2 channel trims to center servos. |
||||
Then adjust aileron trim for level flight (note that aileron trim is affected |
||||
by mixing gain). flapin_channel's trim is not used. |
||||
*/ |
||||
|
||||
ch1 = channel_roll->get_radio_out(); |
||||
// The *5 is to take a percentage to a value from -500 to 500 for the mixer
|
||||
ch2 = 1500 - flap_percent * 5; |
||||
channel_output_mixer(g.flaperon_output, ch1, ch2); |
||||
RC_Channel_aux::set_radio_trimmed(RC_Channel_aux::k_flaperon1, ch1); |
||||
RC_Channel_aux::set_radio_trimmed(RC_Channel_aux::k_flaperon2, ch2); |
||||
} |
||||
|
||||
/*
|
||||
setup servos for idle mode |
||||
Idle mode is used during balloon launch to keep servos still, apart |
||||
from occasional wiggle to prevent freezing up |
||||
*/ |
||||
void Plane::set_servos_idle(void) |
||||
{ |
||||
RC_Channel_aux::output_ch_all(); |
||||
if (auto_state.idle_wiggle_stage == 0) { |
||||
RC_Channel::output_trim_all(); |
||||
return; |
||||
} |
||||
int16_t servo_value = 0; |
||||
// move over full range for 2 seconds
|
||||
auto_state.idle_wiggle_stage += 2; |
||||
if (auto_state.idle_wiggle_stage < 50) { |
||||
servo_value = auto_state.idle_wiggle_stage * (4500 / 50); |
||||
} else if (auto_state.idle_wiggle_stage < 100) { |
||||
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50);
|
||||
} else if (auto_state.idle_wiggle_stage < 150) { |
||||
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50);
|
||||
} else if (auto_state.idle_wiggle_stage < 200) { |
||||
servo_value = (auto_state.idle_wiggle_stage-200) * (4500 / 50);
|
||||
} else { |
||||
auto_state.idle_wiggle_stage = 0; |
||||
} |
||||
channel_roll->set_servo_out(servo_value); |
||||
channel_pitch->set_servo_out(servo_value); |
||||
channel_rudder->set_servo_out(servo_value); |
||||
channel_roll->calc_pwm(); |
||||
channel_pitch->calc_pwm(); |
||||
channel_rudder->calc_pwm(); |
||||
channel_roll->output(); |
||||
channel_pitch->output(); |
||||
channel_throttle->output(); |
||||
channel_rudder->output(); |
||||
channel_throttle->output_trim(); |
||||
} |
||||
|
||||
/*
|
||||
return minimum throttle PWM value, taking account of throttle reversal. For reverse thrust you get the throttle off position |
||||
*/ |
||||
uint16_t Plane::throttle_min(void) const |
||||
{ |
||||
if (aparm.throttle_min < 0) { |
||||
return channel_throttle->get_radio_trim(); |
||||
} |
||||
return channel_throttle->get_reverse() ? channel_throttle->get_radio_max() : channel_throttle->get_radio_min(); |
||||
}; |
||||
|
||||
|
||||
/*****************************************
|
||||
* Set the flight control servos based on the current calculated values |
||||
*****************************************/ |
||||
void Plane::set_servos(void) |
||||
{ |
||||
// this is to allow the failsafe module to deliberately crash
|
||||
// the plane. Only used in extreme circumstances to meet the
|
||||
// OBC rules
|
||||
if (afs.should_crash_vehicle()) { |
||||
afs.terminate_vehicle(); |
||||
return; |
||||
} |
||||
|
||||
int16_t last_throttle = channel_throttle->get_radio_out(); |
||||
|
||||
// do any transition updates for quadplane
|
||||
quadplane.update();
|
||||
|
||||
if (control_mode == AUTO && auto_state.idle_mode) { |
||||
// special handling for balloon launch
|
||||
set_servos_idle(); |
||||
return; |
||||
} |
||||
|
||||
/*
|
||||
see if we are doing ground steering. |
||||
*/ |
||||
if (!steering_control.ground_steering) { |
||||
// we are not at an altitude for ground steering. Set the nose
|
||||
// wheel to the rudder just in case the barometer has drifted
|
||||
// a lot
|
||||
steering_control.steering = steering_control.rudder; |
||||
} else if (!RC_Channel_aux::function_assigned(RC_Channel_aux::k_steering)) { |
||||
// we are within the ground steering altitude but don't have a
|
||||
// dedicated steering channel. Set the rudder to the ground
|
||||
// steering output
|
||||
steering_control.rudder = steering_control.steering; |
||||
} |
||||
channel_rudder->set_servo_out(steering_control.rudder); |
||||
|
||||
// clear ground_steering to ensure manual control if the yaw stabilizer doesn't run
|
||||
steering_control.ground_steering = false; |
||||
|
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_rudder, steering_control.rudder); |
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_steering, steering_control.steering); |
||||
|
||||
if (control_mode == MANUAL) { |
||||
// do a direct pass through of radio values
|
||||
if (g.mix_mode == 0 || g.elevon_output != MIXING_DISABLED) { |
||||
channel_roll->set_radio_out(channel_roll->get_radio_in()); |
||||
channel_pitch->set_radio_out(channel_pitch->get_radio_in()); |
||||
} else { |
||||
channel_roll->set_radio_out(channel_roll->read()); |
||||
channel_pitch->set_radio_out(channel_pitch->read()); |
||||
} |
||||
channel_throttle->set_radio_out(channel_throttle->get_radio_in()); |
||||
channel_rudder->set_radio_out(channel_rudder->get_radio_in()); |
||||
|
||||
// setup extra channels. We want this to come from the
|
||||
// main input channel, but using the 2nd channels dead
|
||||
// zone, reverse and min/max settings. We need to use
|
||||
// pwm_to_angle_dz() to ensure we don't trim the value for the
|
||||
// deadzone of the main aileron channel, otherwise the 2nd
|
||||
// aileron won't quite follow the first one
|
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_aileron, channel_roll->pwm_to_angle_dz(0)); |
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_elevator, channel_pitch->pwm_to_angle_dz(0)); |
||||
|
||||
// this variant assumes you have the corresponding
|
||||
// input channel setup in your transmitter for manual control
|
||||
// of the 2nd aileron
|
||||
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_aileron_with_input); |
||||
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_elevator_with_input); |
||||
|
||||
} else { |
||||
if (g.mix_mode == 0) { |
||||
// both types of secondary aileron are slaved to the roll servo out
|
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_aileron, channel_roll->get_servo_out()); |
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_aileron_with_input, channel_roll->get_servo_out()); |
||||
|
||||
// both types of secondary elevator are slaved to the pitch servo out
|
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_elevator, channel_pitch->get_servo_out()); |
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_elevator_with_input, channel_pitch->get_servo_out()); |
||||
}else{ |
||||
/*Elevon mode*/ |
||||
float ch1; |
||||
float ch2; |
||||
ch1 = channel_pitch->get_servo_out() - (BOOL_TO_SIGN(g.reverse_elevons) * channel_roll->get_servo_out()); |
||||
ch2 = channel_pitch->get_servo_out() + (BOOL_TO_SIGN(g.reverse_elevons) * channel_roll->get_servo_out()); |
||||
|
||||
/* Differential Spoilers
|
||||
If differential spoilers are setup, then we translate |
||||
rudder control into splitting of the two ailerons on |
||||
the side of the aircraft where we want to induce |
||||
additional drag. |
||||
*/ |
||||
if (RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler1) && RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler2)) { |
||||
float ch3 = ch1; |
||||
float ch4 = ch2; |
||||
if ( BOOL_TO_SIGN(g.reverse_elevons) * channel_rudder->get_servo_out() < 0) { |
||||
ch1 += abs(channel_rudder->get_servo_out()); |
||||
ch3 -= abs(channel_rudder->get_servo_out()); |
||||
} else { |
||||
ch2 += abs(channel_rudder->get_servo_out()); |
||||
ch4 -= abs(channel_rudder->get_servo_out()); |
||||
} |
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler1, ch3); |
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler2, ch4); |
||||
} |
||||
|
||||
// directly set the radio_out values for elevon mode
|
||||
channel_roll->set_radio_out(elevon.trim1 + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0f/ SERVO_MAX))); |
||||
channel_pitch->set_radio_out(elevon.trim2 + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0f/ SERVO_MAX))); |
||||
} |
||||
|
||||
// push out the PWM values
|
||||
if (g.mix_mode == 0) { |
||||
channel_roll->calc_pwm(); |
||||
channel_pitch->calc_pwm(); |
||||
} |
||||
channel_rudder->calc_pwm(); |
||||
|
||||
#if THROTTLE_OUT == 0 |
||||
channel_throttle->set_servo_out(0); |
||||
#else |
||||
// convert 0 to 100% (or -100 to +100) into PWM
|
||||
int8_t min_throttle = aparm.throttle_min.get(); |
||||
int8_t max_throttle = aparm.throttle_max.get(); |
||||
|
||||
if (min_throttle < 0 && !allow_reverse_thrust()) { |
||||
// reverse thrust is available but inhibited.
|
||||
min_throttle = 0; |
||||
} |
||||
|
||||
if (control_mode == AUTO) { |
||||
if (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) { |
||||
min_throttle = 0; |
||||
} |
||||
|
||||
if (flight_stage == AP_SpdHgtControl::FLIGHT_TAKEOFF || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_ABORT) { |
||||
if(aparm.takeoff_throttle_max != 0) { |
||||
max_throttle = aparm.takeoff_throttle_max; |
||||
} else { |
||||
max_throttle = aparm.throttle_max; |
||||
} |
||||
} |
||||
} |
||||
|
||||
uint32_t now = millis(); |
||||
if (battery.overpower_detected()) { |
||||
// overpower detected, cut back on the throttle if we're maxing it out by calculating a limiter value
|
||||
// throttle limit will attack by 10% per second
|
||||
|
||||
if (channel_throttle->get_servo_out() > 0 && // demanding too much positive thrust
|
||||
throttle_watt_limit_max < max_throttle - 25 && |
||||
now - throttle_watt_limit_timer_ms >= 1) { |
||||
// always allow for 25% throttle available regardless of battery status
|
||||
throttle_watt_limit_timer_ms = now; |
||||
throttle_watt_limit_max++; |
||||
|
||||
} else if (channel_throttle->get_servo_out() < 0 && |
||||
min_throttle < 0 && // reverse thrust is available
|
||||
throttle_watt_limit_min < -(min_throttle) - 25 && |
||||
now - throttle_watt_limit_timer_ms >= 1) { |
||||
// always allow for 25% throttle available regardless of battery status
|
||||
throttle_watt_limit_timer_ms = now; |
||||
throttle_watt_limit_min++; |
||||
} |
||||
|
||||
} else if (now - throttle_watt_limit_timer_ms >= 1000) { |
||||
// it has been 1 second since last over-current, check if we can resume higher throttle.
|
||||
// this throttle release is needed to allow raising the max_throttle as the battery voltage drains down
|
||||
// throttle limit will release by 1% per second
|
||||
if (channel_throttle->get_servo_out() > throttle_watt_limit_max && // demanding max forward thrust
|
||||
throttle_watt_limit_max > 0) { // and we're currently limiting it
|
||||
throttle_watt_limit_timer_ms = now; |
||||
throttle_watt_limit_max--; |
||||
|
||||
} else if (channel_throttle->get_servo_out() < throttle_watt_limit_min && // demanding max negative thrust
|
||||
throttle_watt_limit_min > 0) { // and we're limiting it
|
||||
throttle_watt_limit_timer_ms = now; |
||||
throttle_watt_limit_min--; |
||||
} |
||||
} |
||||
|
||||
max_throttle = constrain_int16(max_throttle, 0, max_throttle - throttle_watt_limit_max); |
||||
if (min_throttle < 0) { |
||||
min_throttle = constrain_int16(min_throttle, min_throttle + throttle_watt_limit_min, 0); |
||||
} |
||||
|
||||
channel_throttle->set_servo_out(constrain_int16(channel_throttle->get_servo_out(),
|
||||
min_throttle, |
||||
max_throttle)); |
||||
|
||||
if (!hal.util->get_soft_armed()) { |
||||
channel_throttle->set_servo_out(0); |
||||
channel_throttle->calc_pwm();
|
||||
} else if (suppress_throttle()) { |
||||
// throttle is suppressed in auto mode
|
||||
channel_throttle->set_servo_out(0); |
||||
if (g.throttle_suppress_manual) { |
||||
// manual pass through of throttle while throttle is suppressed
|
||||
channel_throttle->set_radio_out(channel_throttle->get_radio_in()); |
||||
} else { |
||||
channel_throttle->calc_pwm();
|
||||
} |
||||
} else if (g.throttle_passthru_stabilize &&
|
||||
(control_mode == STABILIZE ||
|
||||
control_mode == TRAINING || |
||||
control_mode == ACRO || |
||||
control_mode == FLY_BY_WIRE_A || |
||||
control_mode == AUTOTUNE) && |
||||
!failsafe.ch3_counter) { |
||||
// manual pass through of throttle while in FBWA or
|
||||
// STABILIZE mode with THR_PASS_STAB set
|
||||
channel_throttle->set_radio_out(channel_throttle->get_radio_in()); |
||||
} else if ((control_mode == GUIDED || control_mode == AVOID_ADSB) && |
||||
guided_throttle_passthru) { |
||||
// manual pass through of throttle while in GUIDED
|
||||
channel_throttle->set_radio_out(channel_throttle->get_radio_in()); |
||||
} else if (quadplane.in_vtol_mode()) { |
||||
// ask quadplane code for forward throttle
|
||||
channel_throttle->set_servo_out(quadplane.forward_throttle_pct()); |
||||
channel_throttle->calc_pwm(); |
||||
} else { |
||||
// normal throttle calculation based on servo_out
|
||||
channel_throttle->calc_pwm(); |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
// Auto flap deployment
|
||||
int8_t auto_flap_percent = 0; |
||||
int8_t manual_flap_percent = 0; |
||||
static int8_t last_auto_flap; |
||||
static int8_t last_manual_flap; |
||||
|
||||
// work out any manual flap input
|
||||
RC_Channel *flapin = RC_Channel::rc_channel(g.flapin_channel-1); |
||||
if (flapin != NULL && !failsafe.ch3_failsafe && failsafe.ch3_counter == 0) { |
||||
flapin->input(); |
||||
manual_flap_percent = flapin->percent_input(); |
||||
} |
||||
|
||||
if (auto_throttle_mode) { |
||||
int16_t flapSpeedSource = 0; |
||||
if (ahrs.airspeed_sensor_enabled()) { |
||||
flapSpeedSource = target_airspeed_cm * 0.01f; |
||||
} else { |
||||
flapSpeedSource = aparm.throttle_cruise; |
||||
} |
||||
if (g.flap_2_speed != 0 && flapSpeedSource <= g.flap_2_speed) { |
||||
auto_flap_percent = g.flap_2_percent; |
||||
} else if ( g.flap_1_speed != 0 && flapSpeedSource <= g.flap_1_speed) { |
||||
auto_flap_percent = g.flap_1_percent; |
||||
} //else flaps stay at default zero deflection
|
||||
|
||||
/*
|
||||
special flap levels for takeoff and landing. This works |
||||
better than speed based flaps as it leads to less |
||||
possibility of oscillation |
||||
*/ |
||||
if (control_mode == AUTO) { |
||||
switch (flight_stage) { |
||||
case AP_SpdHgtControl::FLIGHT_TAKEOFF: |
||||
case AP_SpdHgtControl::FLIGHT_LAND_ABORT: |
||||
if (g.takeoff_flap_percent != 0) { |
||||
auto_flap_percent = g.takeoff_flap_percent; |
||||
} |
||||
break; |
||||
case AP_SpdHgtControl::FLIGHT_NORMAL: |
||||
if (auto_flap_percent != 0 && in_preLaunch_flight_stage()) { |
||||
// TODO: move this to a new FLIGHT_PRE_TAKEOFF stage
|
||||
auto_flap_percent = g.takeoff_flap_percent; |
||||
} |
||||
break; |
||||
case AP_SpdHgtControl::FLIGHT_LAND_APPROACH: |
||||
case AP_SpdHgtControl::FLIGHT_LAND_PREFLARE: |
||||
case AP_SpdHgtControl::FLIGHT_LAND_FINAL: |
||||
if (g.land_flap_percent != 0) { |
||||
auto_flap_percent = g.land_flap_percent; |
||||
} |
||||
break; |
||||
default: |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
|
||||
// manual flap input overrides auto flap input
|
||||
if (abs(manual_flap_percent) > auto_flap_percent) { |
||||
auto_flap_percent = manual_flap_percent; |
||||
} |
||||
|
||||
flap_slew_limit(last_auto_flap, auto_flap_percent); |
||||
flap_slew_limit(last_manual_flap, manual_flap_percent); |
||||
|
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_flap_auto, auto_flap_percent); |
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_flap, manual_flap_percent); |
||||
|
||||
if (control_mode >= FLY_BY_WIRE_B || |
||||
quadplane.in_assisted_flight() || |
||||
quadplane.in_vtol_mode()) { |
||||
/* only do throttle slew limiting in modes where throttle
|
||||
* control is automatic */ |
||||
throttle_slew_limit(last_throttle); |
||||
} |
||||
|
||||
if (control_mode == TRAINING) { |
||||
// copy rudder in training mode
|
||||
channel_rudder->set_radio_out(channel_rudder->get_radio_in()); |
||||
} |
||||
|
||||
if (g.flaperon_output != MIXING_DISABLED && g.elevon_output == MIXING_DISABLED && g.mix_mode == 0) { |
||||
flaperon_update(auto_flap_percent); |
||||
} |
||||
if (g.vtail_output != MIXING_DISABLED) { |
||||
channel_output_mixer(g.vtail_output, channel_pitch, channel_rudder); |
||||
} else if (g.elevon_output != MIXING_DISABLED) { |
||||
channel_output_mixer(g.elevon_output, channel_pitch, channel_roll); |
||||
// if (both) differential spoilers setup then apply rudder
|
||||
// control into splitting the two elevons on the side of
|
||||
// the aircraft where we want to induce additional drag:
|
||||
if (RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler1) && |
||||
RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler2)) { |
||||
int16_t ch3 = channel_roll->get_radio_out(); //diff spoiler 1
|
||||
int16_t ch4 = channel_pitch->get_radio_out(); //diff spoiler 2
|
||||
// convert rudder-servo output (-4500 to 4500) to PWM offset
|
||||
// value (-500 to 500) and multiply by DSPOILR_RUD_RATE/100
|
||||
// (rudder->servo_out * 500 / SERVO_MAX * dspoiler_rud_rate/100):
|
||||
int16_t ruddVal = (int16_t)((int32_t)(channel_rudder->get_servo_out()) * |
||||
g.dspoiler_rud_rate / (SERVO_MAX/5)); |
||||
if (ruddVal != 0) { //if nonzero rudder then apply to spoilers
|
||||
int16_t ch1 = ch3; //elevon 1
|
||||
int16_t ch2 = ch4; //elevon 2
|
||||
if (ruddVal > 0) { //apply rudder to right or left side
|
||||
ch1 += ruddVal; |
||||
ch3 -= ruddVal; |
||||
} else { |
||||
ch2 += ruddVal; |
||||
ch4 -= ruddVal; |
||||
} |
||||
// change elevon 1 & 2 positions; constrain min/max:
|
||||
channel_roll->set_radio_out(constrain_int16(ch1, 900, 2100)); |
||||
channel_pitch->set_radio_out(constrain_int16(ch2, 900, 2100)); |
||||
// constrain min/max for intermediate dspoiler positions:
|
||||
ch3 = constrain_int16(ch3, 900, 2100); |
||||
ch4 = constrain_int16(ch4, 900, 2100); |
||||
} |
||||
// set positions of differential spoilers (convert PWM
|
||||
// 900-2100 range to servo output (-4500 to 4500)
|
||||
// and use function that supports rev/min/max/trim):
|
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler1, |
||||
(ch3-(int16_t)1500) * (int16_t)(SERVO_MAX/300) / (int16_t)2); |
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler2, |
||||
(ch4-(int16_t)1500) * (int16_t)(SERVO_MAX/300) / (int16_t)2); |
||||
} |
||||
} |
||||
|
||||
if (!arming.is_armed()) { |
||||
//Some ESCs get noisy (beep error msgs) if PWM == 0.
|
||||
//This little segment aims to avoid this.
|
||||
switch (arming.arming_required()) {
|
||||
case AP_Arming::NO: |
||||
//keep existing behavior: do nothing to radio_out
|
||||
//(don't disarm throttle channel even if AP_Arming class is)
|
||||
break; |
||||
|
||||
case AP_Arming::YES_ZERO_PWM: |
||||
channel_throttle->set_servo_out(0); |
||||
channel_throttle->set_radio_out(0); |
||||
break; |
||||
|
||||
case AP_Arming::YES_MIN_PWM: |
||||
default: |
||||
channel_throttle->set_servo_out(0); |
||||
channel_throttle->set_radio_out(throttle_min()); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
#if HIL_SUPPORT |
||||
if (g.hil_mode == 1) { |
||||
// get the servos to the GCS immediately for HIL
|
||||
if (HAVE_PAYLOAD_SPACE(MAVLINK_COMM_0, RC_CHANNELS_SCALED)) { |
||||
send_servo_out(MAVLINK_COMM_0); |
||||
} |
||||
if (!g.hil_servos) { |
||||
return; |
||||
} |
||||
} |
||||
#endif |
||||
|
||||
if (g.land_then_servos_neutral > 0 && |
||||
control_mode == AUTO && |
||||
g.land_disarm_delay > 0 && |
||||
auto_state.land_complete && |
||||
!arming.is_armed()) { |
||||
// after an auto land and auto disarm, set the servos to be neutral just
|
||||
// in case we're upside down or some crazy angle and straining the servos.
|
||||
if (g.land_then_servos_neutral == 1) { |
||||
channel_roll->set_radio_out(channel_roll->get_radio_trim()); |
||||
channel_pitch->set_radio_out(channel_pitch->get_radio_trim()); |
||||
channel_rudder->set_radio_out(channel_rudder->get_radio_trim()); |
||||
} else if (g.land_then_servos_neutral == 2) { |
||||
channel_roll->disable_out(); |
||||
channel_pitch->disable_out(); |
||||
channel_rudder->disable_out(); |
||||
} |
||||
} |
||||
|
||||
uint8_t override_pct; |
||||
if (g2.ice_control.throttle_override(override_pct)) { |
||||
// the ICE controller wants to override the throttle for starting
|
||||
channel_throttle->set_servo_out(override_pct); |
||||
channel_throttle->calc_pwm(); |
||||
} |
||||
|
||||
// allow for secondary throttle
|
||||
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_throttle, channel_throttle->get_servo_out()); |
||||
|
||||
// send values to the PWM timers for output
|
||||
// ----------------------------------------
|
||||
if (g.rudder_only == 0) { |
||||
// when we RUDDER_ONLY mode we don't send the channel_roll
|
||||
// output and instead rely on KFF_RDDRMIX. That allows the yaw
|
||||
// damper to operate.
|
||||
channel_roll->output(); |
||||
} |
||||
channel_pitch->output(); |
||||
channel_throttle->output(); |
||||
channel_rudder->output(); |
||||
RC_Channel_aux::output_ch_all(); |
||||
} |
Loading…
Reference in new issue