|
|
|
@ -9,7 +9,12 @@
@@ -9,7 +9,12 @@
|
|
|
|
|
#include <stdlib.h> |
|
|
|
|
#include <math.h> |
|
|
|
|
|
|
|
|
|
static float noise_scale[8] = { 240, 400, 500, 200, 400, 400, 2000, 200 }; |
|
|
|
|
static const float vibration_level = 0.1; |
|
|
|
|
// order zgyro, xgyro, ygyro, temp, xacc, yacc, zacc, aspd
|
|
|
|
|
static const float noise_scale[8] = { 150, 150, 150, 0, 400, 400, 400, 0 }; |
|
|
|
|
static const float noise_offset[8]= { 0, 0, 0, 0, 0, 0, 0, 0 }; |
|
|
|
|
static const float drift_rate[8] = { 0.7, 1.0, 0.5, 0, 0, 0, 0, 0 }; |
|
|
|
|
static const float base_noise = 2; |
|
|
|
|
|
|
|
|
|
// generate a random float between -1 and 1
|
|
|
|
|
static double rand_float(void) |
|
|
|
@ -18,25 +23,43 @@ static double rand_float(void)
@@ -18,25 +23,43 @@ static double rand_float(void)
|
|
|
|
|
return (ret - 1.0e6) / 1.0e6; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static inline float gyro_drift(uint8_t chan) |
|
|
|
|
{ |
|
|
|
|
if (drift_rate[chan] == 0) { |
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
extern long unsigned int micros(void); |
|
|
|
|
double period = 10*drift_rate[chan]; |
|
|
|
|
double minutes = fmod(micros() / 60.0e6, period); |
|
|
|
|
if (minutes < period/2) { |
|
|
|
|
return minutes; |
|
|
|
|
} |
|
|
|
|
return period - minutes; |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static inline float noise_generator(uint8_t chan) |
|
|
|
|
{ |
|
|
|
|
extern float sitl_motor_speed[4]; |
|
|
|
|
extern long unsigned int micros(void); |
|
|
|
|
uint8_t i; |
|
|
|
|
float noise = 0; |
|
|
|
|
uint8_t noise_count=0; |
|
|
|
|
double t = micros() / 1.0e6; |
|
|
|
|
extern long unsigned int micros(void); |
|
|
|
|
for (i=0; i<4; i++) { |
|
|
|
|
if (sitl_motor_speed[i] > 0.0) { |
|
|
|
|
float n = rand_float() * noise_scale[chan]; |
|
|
|
|
noise += sin(fmod(t * sitl_motor_speed[i] * 2 * 3.14 + i, 2*3.14)) * n; |
|
|
|
|
float n = rand_float() * noise_scale[chan] * vibration_level; |
|
|
|
|
//double t = micros() / 1.0e6;
|
|
|
|
|
//float freq = (rand_float() + 1.0) * sitl_motor_speed[i];
|
|
|
|
|
//noise += sin(fmod(t * freq * 2 * M_PI + i,
|
|
|
|
|
//2*M_PI)) * n;
|
|
|
|
|
noise += n + noise_offset[chan]; |
|
|
|
|
noise_count++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (noise_count == 0) { |
|
|
|
|
return 0; |
|
|
|
|
return rand_float() * base_noise; |
|
|
|
|
} |
|
|
|
|
return noise/noise_count; |
|
|
|
|
return gyro_drift(chan) + noise/noise_count; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// this implements the UDR2 register
|
|
|
|
@ -75,11 +98,10 @@ struct ADC_UDR2 {
@@ -75,11 +98,10 @@ struct ADC_UDR2 {
|
|
|
|
|
} |
|
|
|
|
next_analog = channels[chan]; |
|
|
|
|
idx = 1; |
|
|
|
|
next_value = (unsigned)(next_analog + noise_generator(chan) + 0.5); |
|
|
|
|
if (next_value >= 0x1000) { |
|
|
|
|
next_value = 0xFFF; |
|
|
|
|
} |
|
|
|
|
next_value = (next_value << 3); |
|
|
|
|
next_analog += noise_generator(chan) + 0.5; |
|
|
|
|
if (next_analog > 0xFFF) next_analog = 0xFFF; |
|
|
|
|
if (next_analog < 0) next_analog = 0; |
|
|
|
|
next_value = ((unsigned)next_analog) << 3; |
|
|
|
|
return *this; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|