Browse Source

Copter: autotune check for vel overshoot in angle P

this change reduces the chance of over tuned angle P
mission-4.1.18
Leonard Hall 7 years ago committed by Randy Mackay
parent
commit
83fac326a4
  1. 25
      ArduCopter/mode.h
  2. 265
      ArduCopter/mode_autotune.cpp

25
ArduCopter/mode.h

@ -373,13 +373,14 @@ private: @@ -373,13 +373,14 @@ private:
bool roll_enabled();
bool pitch_enabled();
bool yaw_enabled();
void twitching_test(float measurement, float target, float &measurement_min, float &measurement_max);
void updating_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max);
void updating_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max);
void updating_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float target, float measurement_max);
void updating_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float target, float measurement_max);
void updating_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max);
void twitching_test_rate(float rate, float rate_target, float &meas_rate_min, float &meas_rate_max);
void twitching_test_angle(float angle, float rate, float angle_target, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max);
void twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max);
void updating_rate_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max);
void updating_rate_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max);
void updating_rate_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max);
void updating_angle_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max);
void updating_angle_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max);
void get_poshold_attitude(float &roll_cd, float &pitch_cd, float &yaw_cd);
#if LOGGING_ENABLED == ENABLED
@ -450,17 +451,19 @@ private: @@ -450,17 +451,19 @@ private:
// variables
uint32_t override_time; // the last time the pilot overrode the controls
float test_min; // the minimum angular rate achieved during TESTING_RATE step
float test_max; // the maximum angular rate achieved during TESTING_RATE step
float test_rate_min; // the minimum angular rate achieved during TESTING_RATE step
float test_rate_max; // the maximum angular rate achieved during TESTING_RATE step
float test_angle_min; // the minimum angle achieved during TESTING_ANGLE step
float test_angle_max; // the maximum angle achieved during TESTING_ANGLE step
uint32_t step_start_time; // start time of current tuning step (used for timeout checks)
uint32_t step_stop_time; // start time of current tuning step (used for timeout checks)
int8_t counter; // counter for tuning gains
float target_rate, start_rate; // target and start rate
float target_angle, start_angle; // target and start angles
float target_rate, start_rate; // target and start rate
float target_angle, start_angle; // target and start angles
float desired_yaw; // yaw heading during tune
float rate_max, test_accel_max; // maximum acceleration variables
LowPassFilterFloat rotation_rate_filt; // filtered rotation rate in radians/second
LowPassFilterFloat rotation_rate_filt; // filtered rotation rate in radians/second
// backup of currently being tuned parameter values
float orig_roll_rp = 0, orig_roll_ri, orig_roll_rd, orig_roll_sp, orig_roll_accel;

265
ArduCopter/mode_autotune.cpp

@ -73,7 +73,7 @@ @@ -73,7 +73,7 @@
// roll and pitch axes
#define AUTOTUNE_TARGET_ANGLE_RLLPIT_CD 2000 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_RATE_RLLPIT_CDS 9000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_TARGET_RATE_RLLPIT_CDS 18000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD 1000 // minimum target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS 4500 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
@ -499,8 +499,10 @@ void Copter::ModeAutoTune::autotune_attitude_control() @@ -499,8 +499,10 @@ void Copter::ModeAutoTune::autotune_attitude_control()
step_start_time = millis();
step_stop_time = step_start_time + AUTOTUNE_TESTING_STEP_TIMEOUT_MS;
twitch_first_iter = true;
test_max = 0.0f;
test_min = 0.0f;
test_rate_max = 0.0f;
test_rate_min = 0.0f;
test_angle_max = 0.0f;
test_angle_min = 0.0f;
rotation_rate_filt.reset(0.0f);
rate_max = 0.0f;
// set gains to their to-be-tested values
@ -628,14 +630,14 @@ void Copter::ModeAutoTune::autotune_attitude_control() @@ -628,14 +630,14 @@ void Copter::ModeAutoTune::autotune_attitude_control()
switch (tune_type) {
case RD_UP:
case RD_DOWN:
twitching_test(rotation_rate, target_rate, test_min, test_max);
twitching_test_rate(rotation_rate, target_rate, test_rate_min, test_rate_max);
twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max);
if (lean_angle >= target_angle) {
step = UPDATE_GAINS;
}
break;
case RP_UP:
twitching_test(rotation_rate, target_rate*(1+0.5f*g.autotune_aggressiveness), test_min, test_max);
twitching_test_rate(rotation_rate, target_rate*(1+0.5f*g.autotune_aggressiveness), test_rate_min, test_rate_max);
twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max);
if (lean_angle >= target_angle) {
step = UPDATE_GAINS;
@ -643,7 +645,7 @@ void Copter::ModeAutoTune::autotune_attitude_control() @@ -643,7 +645,7 @@ void Copter::ModeAutoTune::autotune_attitude_control()
break;
case SP_DOWN:
case SP_UP:
twitching_test(lean_angle, target_angle*(1+0.5f*g.autotune_aggressiveness), test_min, test_max);
twitching_test_angle(lean_angle, rotation_rate, target_angle*(1+0.5f*g.autotune_aggressiveness), test_angle_min, test_angle_max, test_rate_min, test_rate_max);
twitching_measure_acceleration(test_accel_max, rotation_rate - direction_sign * start_rate, rate_max);
break;
}
@ -665,25 +667,25 @@ void Copter::ModeAutoTune::autotune_attitude_control() @@ -665,25 +667,25 @@ void Copter::ModeAutoTune::autotune_attitude_control()
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) {
switch (axis) {
case ROLL:
Log_Write_AutoTune(axis, tune_type, target_angle, test_min, test_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max);
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max);
break;
case PITCH:
Log_Write_AutoTune(axis, tune_type, target_angle, test_min, test_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max);
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max);
break;
case YAW:
Log_Write_AutoTune(axis, tune_type, target_angle, test_min, test_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max);
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max);
break;
}
} else {
switch (axis) {
case ROLL:
Log_Write_AutoTune(axis, tune_type, target_rate, test_min, test_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max);
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max);
break;
case PITCH:
Log_Write_AutoTune(axis, tune_type, target_rate, test_min, test_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max);
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max);
break;
case YAW:
Log_Write_AutoTune(axis, tune_type, target_rate, test_min, test_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max);
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max);
break;
}
}
@ -694,13 +696,13 @@ void Copter::ModeAutoTune::autotune_attitude_control() @@ -694,13 +696,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
case RD_UP:
switch (axis) {
case ROLL:
updating_d_up(tune_roll_rd, g.autotune_min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max);
updating_rate_d_up(tune_roll_rd, g.autotune_min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case PITCH:
updating_d_up(tune_pitch_rd, g.autotune_min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max);
updating_rate_d_up(tune_pitch_rd, g.autotune_min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case YAW:
updating_d_up(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RLPF_MAX, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max);
updating_rate_d_up(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RLPF_MAX, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
}
break;
@ -708,13 +710,13 @@ void Copter::ModeAutoTune::autotune_attitude_control() @@ -708,13 +710,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
case RD_DOWN:
switch (axis) {
case ROLL:
updating_d_down(tune_roll_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max);
updating_rate_d_down(tune_roll_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case PITCH:
updating_d_down(tune_pitch_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max);
updating_rate_d_down(tune_pitch_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case YAW:
updating_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max);
updating_rate_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
}
break;
@ -722,13 +724,13 @@ void Copter::ModeAutoTune::autotune_attitude_control() @@ -722,13 +724,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
case RP_UP:
switch (axis) {
case ROLL:
updating_p_up_d_down(tune_roll_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max);
updating_rate_p_up_d_down(tune_roll_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case PITCH:
updating_p_up_d_down(tune_pitch_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max);
updating_rate_p_up_d_down(tune_pitch_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case YAW:
updating_p_up_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max);
updating_rate_p_up_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
}
break;
@ -736,13 +738,13 @@ void Copter::ModeAutoTune::autotune_attitude_control() @@ -736,13 +738,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
case SP_DOWN:
switch (axis) {
case ROLL:
updating_p_down(tune_roll_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_max);
updating_angle_p_down(tune_roll_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
case PITCH:
updating_p_down(tune_pitch_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_max);
updating_angle_p_down(tune_pitch_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
case YAW:
updating_p_down(tune_yaw_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_max);
updating_angle_p_down(tune_yaw_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
}
break;
@ -750,13 +752,13 @@ void Copter::ModeAutoTune::autotune_attitude_control() @@ -750,13 +752,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
case SP_UP:
switch (axis) {
case ROLL:
updating_p_up(tune_roll_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_max);
updating_angle_p_up(tune_roll_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
case PITCH:
updating_p_up(tune_pitch_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_max);
updating_angle_p_up(tune_pitch_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
case YAW:
updating_p_up(tune_yaw_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_max);
updating_angle_p_up(tune_yaw_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
}
break;
@ -1182,37 +1184,37 @@ inline bool Copter::ModeAutoTune::yaw_enabled() { @@ -1182,37 +1184,37 @@ inline bool Copter::ModeAutoTune::yaw_enabled() {
return g.autotune_axis_bitmask & AUTOTUNE_AXIS_BITMASK_YAW;
}
// twitching_test - twitching tests
// twitching_test_rate - twitching tests
// update min and max and test for end conditions
void Copter::ModeAutoTune::twitching_test(float measurement, float target, float &measurement_min, float &measurement_max)
void Copter::ModeAutoTune::twitching_test_rate(float rate, float rate_target_max, float &meas_rate_min, float &meas_rate_max)
{
// capture maximum measurement
if (measurement > measurement_max) {
// capture maximum rate
if (rate > meas_rate_max) {
// the measurement is continuing to increase without stopping
measurement_max = measurement;
measurement_min = measurement;
meas_rate_max = rate;
meas_rate_min = rate;
}
// capture minimum measurement after the measurement has peaked (aka "bounce back")
if ((measurement < measurement_min) && (measurement_max > target * 0.5f)) {
if ((rate < meas_rate_min) && (meas_rate_max > rate_target_max * 0.5f)) {
// the measurement is bouncing back
measurement_min = measurement;
meas_rate_min = rate;
}
// calculate early stopping time based on the time it takes to get to 90%
if (measurement_max < target * 0.75f) {
if (meas_rate_max < rate_target_max * 0.75f) {
// the measurement not reached the 90% threshold yet
step_stop_time = step_start_time + (millis() - step_start_time) * 3.0f;
step_stop_time = MIN(step_stop_time, step_start_time + AUTOTUNE_TESTING_STEP_TIMEOUT_MS);
}
if (measurement_max > target) {
// the measurement has passed the target
if (meas_rate_max > rate_target_max) {
// the measured rate has passed the maximum target rate
step = UPDATE_GAINS;
}
if (measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) {
// the measurement has passed 50% of the target and bounce back is larger than the threshold
if (meas_rate_max-meas_rate_min > meas_rate_max*g.autotune_aggressiveness) {
// the measurement has passed 50% of the maximum rate and bounce back is larger than the threshold
step = UPDATE_GAINS;
}
@ -1222,11 +1224,73 @@ void Copter::ModeAutoTune::twitching_test(float measurement, float target, float @@ -1222,11 +1224,73 @@ void Copter::ModeAutoTune::twitching_test(float measurement, float target, float
}
}
// updating_d_up - increase D and adjust P to optimize the D term for a little bounce back
// twitching_test_angle - twitching tests
// update min and max and test for end conditions
void Copter::ModeAutoTune::twitching_test_angle(float angle, float rate, float angle_target_max, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max)
{
// capture maximum angle
if (angle > meas_angle_max) {
// the angle still increasing
meas_angle_max = angle;
meas_angle_min = angle;
}
// capture minimum angle after we have reached a reasonable maximum angle
if ((angle < meas_angle_min) && (meas_angle_max > angle_target_max * 0.5f)) {
// the measurement is bouncing back
meas_angle_min = angle;
}
// capture maximum rate
if (rate > meas_rate_max) {
// the measurement is still increasing
meas_rate_max = rate;
meas_rate_min = rate;
}
// capture minimum rate after we have reached maximum rate
if (rate < meas_rate_min) {
// the measurement is still decreasing
meas_rate_min = rate;
}
// calculate early stopping time based on the time it takes to get to 90%
if (meas_angle_max < angle_target_max * 0.75f) {
// the measurement not reached the 90% threshold yet
step_stop_time = step_start_time + (millis() - step_start_time) * 3.0f;
step_stop_time = MIN(step_stop_time, step_start_time + AUTOTUNE_TESTING_STEP_TIMEOUT_MS);
}
if (meas_angle_max > angle_target_max) {
// the measurement has passed the maximum angle
step = UPDATE_GAINS;
}
if (meas_angle_max-meas_angle_min > meas_angle_max*g.autotune_aggressiveness) {
// the measurement has passed 50% of the maximum angle and bounce back is larger than the threshold
step = UPDATE_GAINS;
}
if (millis() >= step_stop_time) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
// twitching_measure_acceleration - measure rate of change of measurement
void Copter::ModeAutoTune::twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max)
{
if (rate_measurement_max < rate_measurement) {
rate_measurement_max = rate_measurement;
rate_of_change = (1000.0f*rate_measurement_max)/(millis() - step_start_time);
}
}
// updating_rate_d_up - increase D and adjust P to optimize the D term for a little bounce back
// optimize D term while keeping the maximum just below the target by adjusting P
void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max)
void Copter::ModeAutoTune::updating_rate_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max)
{
if (measurement_max > target) {
if (meas_rate_max > rate_target) {
// if maximum measurement was higher than target
// reduce P gain (which should reduce maximum)
tune_p -= tune_p*tune_p_step_ratio;
@ -1241,7 +1305,7 @@ void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float @@ -1241,7 +1305,7 @@ void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}else if ((measurement_max < target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) {
}else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) {
// we have not achieved a high enough maximum to get a good measurement of bounce back.
// increase P gain (which should increase maximum)
tune_p += tune_p*tune_p_step_ratio;
@ -1251,7 +1315,7 @@ void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float @@ -1251,7 +1315,7 @@ void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float
}
}else{
// we have a good measurement of bounce back
if (measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) {
if (meas_rate_max-meas_rate_min > meas_rate_max*g.autotune_aggressiveness) {
// ignore the next result unless it is the same as this one
ignore_next = true;
// bounce back is bigger than our threshold so increment the success counter
@ -1277,11 +1341,11 @@ void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float @@ -1277,11 +1341,11 @@ void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float
}
}
// updating_d_down - decrease D and adjust P to optimize the D term for no bounce back
// updating_rate_d_down - decrease D and adjust P to optimize the D term for no bounce back
// optimize D term while keeping the maximum just below the target by adjusting P
void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max)
void Copter::ModeAutoTune::updating_rate_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max)
{
if (measurement_max > target) {
if (meas_rate_max > rate_target) {
// if maximum measurement was higher than target
// reduce P gain (which should reduce maximum)
tune_p -= tune_p*tune_p_step_ratio;
@ -1296,7 +1360,7 @@ void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, floa @@ -1296,7 +1360,7 @@ void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, floa
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}else if ((measurement_max < target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) {
}else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) {
// we have not achieved a high enough maximum to get a good measurement of bounce back.
// increase P gain (which should increase maximum)
tune_p += tune_p*tune_p_step_ratio;
@ -1306,7 +1370,7 @@ void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, floa @@ -1306,7 +1370,7 @@ void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, floa
}
}else{
// we have a good measurement of bounce back
if (measurement_max-measurement_min < measurement_max*g.autotune_aggressiveness) {
if (meas_rate_max-meas_rate_min < meas_rate_max*g.autotune_aggressiveness) {
if (ignore_next == false) {
// bounce back is less than our threshold so increment the success counter
counter++;
@ -1332,44 +1396,36 @@ void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, floa @@ -1332,44 +1396,36 @@ void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, floa
}
}
// updating_p_down - decrease P until we don't reach the target before time out
// P is decreased to ensure we are not overshooting the target
void Copter::ModeAutoTune::updating_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float target, float measurement_max)
// updating_rate_p_up_d_down - increase P to ensure the target is reached while checking bounce back isn't increasing
// P is increased until we achieve our target within a reasonable time while reducing D if bounce back increases above the threshold
void Copter::ModeAutoTune::updating_rate_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max)
{
if (measurement_max < target*(1+0.5f*g.autotune_aggressiveness)) {
if (ignore_next == false) {
// if maximum measurement was lower than target so increment the success counter
counter++;
} else {
ignore_next = false;
}
}else{
if (meas_rate_max > rate_target*(1+0.5f*g.autotune_aggressiveness)) {
// ignore the next result unless it is the same as this one
ignore_next = true;
// if maximum measurement was higher than target so decrement the success counter
// if maximum measurement was greater than target so increment the success counter
counter++;
} else if ((meas_rate_max < rate_target) && (meas_rate_max > rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (meas_rate_max-meas_rate_min > meas_rate_max*g.autotune_aggressiveness) && (tune_d > tune_d_min)) {
// if bounce back was larger than the threshold so decrement the success counter
if (counter > 0 ) {
counter--;
}
// decrease P gain (which should decrease the maximum)
// decrease D gain (which should decrease bounce back)
tune_d -= tune_d*tune_d_step_ratio;
// do not decrease the D term past the minimum
if (tune_d <= tune_d_min) {
tune_d = tune_d_min;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
// decrease P gain to match D gain reduction
tune_p -= tune_p*tune_p_step_ratio;
// stop tuning if we hit maximum P
// do not decrease the P term past the minimum
if (tune_p <= tune_p_min) {
tune_p = tune_p_min;
counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
}
}
// updating_p_up - increase P to ensure the target is reached
// P is increased until we achieve our target within a reasonable time
void Copter::ModeAutoTune::updating_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float target, float measurement_max)
{
if (measurement_max > target*(1+0.5f*g.autotune_aggressiveness)) {
// ignore the next result unless it is the same as this one
ignore_next = 1;
// if maximum measurement was greater than target so increment the success counter
counter++;
// cancel change in direction
positive_direction = !positive_direction;
}else{
if (ignore_next == false) {
// if maximum measurement was lower than target so decrement the success counter
@ -1390,36 +1446,44 @@ void Copter::ModeAutoTune::updating_p_up(float &tune_p, float tune_p_max, float @@ -1390,36 +1446,44 @@ void Copter::ModeAutoTune::updating_p_up(float &tune_p, float tune_p_max, float
}
}
// updating_p_up - increase P to ensure the target is reached while checking bounce back isn't increasing
// P is increased until we achieve our target within a reasonable time while reducing D if bounce back increases above the threshold
void Copter::ModeAutoTune::updating_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max)
// updating_angle_p_down - decrease P until we don't reach the target before time out
// P is decreased to ensure we are not overshooting the target
void Copter::ModeAutoTune::updating_angle_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max)
{
if (measurement_max > target*(1+0.5f*g.autotune_aggressiveness)) {
if ((meas_angle_max < angle_target*(1+0.5f*g.autotune_aggressiveness)) && (meas_rate_min > -meas_rate_max*g.autotune_aggressiveness)) {
if (ignore_next == false) {
// if maximum measurement was lower than target so increment the success counter
counter++;
} else {
ignore_next = false;
}
}else{
// ignore the next result unless it is the same as this one
ignore_next = true;
// if maximum measurement was greater than target so increment the success counter
counter++;
} else if ((measurement_max < target) && (measurement_max > target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) && (tune_d > tune_d_min)) {
// if bounce back was larger than the threshold so decrement the success counter
// if maximum measurement was higher than target so decrement the success counter
if (counter > 0 ) {
counter--;
}
// decrease D gain (which should decrease bounce back)
tune_d -= tune_d*tune_d_step_ratio;
// stop tuning if we hit minimum D
if (tune_d <= tune_d_min) {
tune_d = tune_d_min;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
// decrease P gain to match D gain reduction
// decrease P gain (which should decrease the maximum)
tune_p -= tune_p*tune_p_step_ratio;
// stop tuning if we hit minimum P
// stop tuning if we hit maximum P
if (tune_p <= tune_p_min) {
tune_p = tune_p_min;
counter = AUTOTUNE_SUCCESS_COUNT;
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT);
}
// cancel change in direction
positive_direction = !positive_direction;
}
}
// updating_angle_p_up - increase P to ensure the target is reached
// P is increased until we achieve our target within a reasonable time
void Copter::ModeAutoTune::updating_angle_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max)
{
if ((meas_angle_max > angle_target*(1+0.5f*g.autotune_aggressiveness)) || (meas_rate_min < -meas_rate_max*g.autotune_aggressiveness)) {
// ignore the next result unless it is the same as this one
ignore_next = 1;
// if maximum measurement was greater than target so increment the success counter
counter++;
}else{
if (ignore_next == false) {
// if maximum measurement was lower than target so decrement the success counter
@ -1440,15 +1504,6 @@ void Copter::ModeAutoTune::updating_p_up_d_down(float &tune_d, float tune_d_min, @@ -1440,15 +1504,6 @@ void Copter::ModeAutoTune::updating_p_up_d_down(float &tune_d, float tune_d_min,
}
}
// twitching_measure_acceleration - measure rate of change of measurement
void Copter::ModeAutoTune::twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max)
{
if (rate_measurement_max < rate_measurement) {
rate_measurement_max = rate_measurement;
rate_of_change = (1000.0f*rate_measurement_max)/(millis() - step_start_time);
}
}
// get attitude for slow position hold in autotune mode
void Copter::ModeAutoTune::get_poshold_attitude(float &roll_cd_out, float &pitch_cd_out, float &yaw_cd_out)
{

Loading…
Cancel
Save