|
|
|
@ -73,7 +73,7 @@
@@ -73,7 +73,7 @@
|
|
|
|
|
|
|
|
|
|
// roll and pitch axes
|
|
|
|
|
#define AUTOTUNE_TARGET_ANGLE_RLLPIT_CD 2000 // target angle during TESTING_RATE step that will cause us to move to next step
|
|
|
|
|
#define AUTOTUNE_TARGET_RATE_RLLPIT_CDS 9000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
|
|
|
|
|
#define AUTOTUNE_TARGET_RATE_RLLPIT_CDS 18000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
|
|
|
|
|
#define AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD 1000 // minimum target angle during TESTING_RATE step that will cause us to move to next step
|
|
|
|
|
#define AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS 4500 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
|
|
|
|
|
|
|
|
|
@ -499,8 +499,10 @@ void Copter::ModeAutoTune::autotune_attitude_control()
@@ -499,8 +499,10 @@ void Copter::ModeAutoTune::autotune_attitude_control()
|
|
|
|
|
step_start_time = millis(); |
|
|
|
|
step_stop_time = step_start_time + AUTOTUNE_TESTING_STEP_TIMEOUT_MS; |
|
|
|
|
twitch_first_iter = true; |
|
|
|
|
test_max = 0.0f; |
|
|
|
|
test_min = 0.0f; |
|
|
|
|
test_rate_max = 0.0f; |
|
|
|
|
test_rate_min = 0.0f; |
|
|
|
|
test_angle_max = 0.0f; |
|
|
|
|
test_angle_min = 0.0f; |
|
|
|
|
rotation_rate_filt.reset(0.0f); |
|
|
|
|
rate_max = 0.0f; |
|
|
|
|
// set gains to their to-be-tested values
|
|
|
|
@ -628,14 +630,14 @@ void Copter::ModeAutoTune::autotune_attitude_control()
@@ -628,14 +630,14 @@ void Copter::ModeAutoTune::autotune_attitude_control()
|
|
|
|
|
switch (tune_type) { |
|
|
|
|
case RD_UP: |
|
|
|
|
case RD_DOWN: |
|
|
|
|
twitching_test(rotation_rate, target_rate, test_min, test_max); |
|
|
|
|
twitching_test_rate(rotation_rate, target_rate, test_rate_min, test_rate_max); |
|
|
|
|
twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max); |
|
|
|
|
if (lean_angle >= target_angle) { |
|
|
|
|
step = UPDATE_GAINS; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case RP_UP: |
|
|
|
|
twitching_test(rotation_rate, target_rate*(1+0.5f*g.autotune_aggressiveness), test_min, test_max); |
|
|
|
|
twitching_test_rate(rotation_rate, target_rate*(1+0.5f*g.autotune_aggressiveness), test_rate_min, test_rate_max); |
|
|
|
|
twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max); |
|
|
|
|
if (lean_angle >= target_angle) { |
|
|
|
|
step = UPDATE_GAINS; |
|
|
|
@ -643,7 +645,7 @@ void Copter::ModeAutoTune::autotune_attitude_control()
@@ -643,7 +645,7 @@ void Copter::ModeAutoTune::autotune_attitude_control()
|
|
|
|
|
break; |
|
|
|
|
case SP_DOWN: |
|
|
|
|
case SP_UP: |
|
|
|
|
twitching_test(lean_angle, target_angle*(1+0.5f*g.autotune_aggressiveness), test_min, test_max); |
|
|
|
|
twitching_test_angle(lean_angle, rotation_rate, target_angle*(1+0.5f*g.autotune_aggressiveness), test_angle_min, test_angle_max, test_rate_min, test_rate_max); |
|
|
|
|
twitching_measure_acceleration(test_accel_max, rotation_rate - direction_sign * start_rate, rate_max); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
@ -665,25 +667,25 @@ void Copter::ModeAutoTune::autotune_attitude_control()
@@ -665,25 +667,25 @@ void Copter::ModeAutoTune::autotune_attitude_control()
|
|
|
|
|
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) { |
|
|
|
|
switch (axis) { |
|
|
|
|
case ROLL: |
|
|
|
|
Log_Write_AutoTune(axis, tune_type, target_angle, test_min, test_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max); |
|
|
|
|
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max); |
|
|
|
|
break; |
|
|
|
|
case PITCH: |
|
|
|
|
Log_Write_AutoTune(axis, tune_type, target_angle, test_min, test_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max); |
|
|
|
|
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max); |
|
|
|
|
break; |
|
|
|
|
case YAW: |
|
|
|
|
Log_Write_AutoTune(axis, tune_type, target_angle, test_min, test_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max); |
|
|
|
|
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
switch (axis) { |
|
|
|
|
case ROLL: |
|
|
|
|
Log_Write_AutoTune(axis, tune_type, target_rate, test_min, test_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max); |
|
|
|
|
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max); |
|
|
|
|
break; |
|
|
|
|
case PITCH: |
|
|
|
|
Log_Write_AutoTune(axis, tune_type, target_rate, test_min, test_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max); |
|
|
|
|
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max); |
|
|
|
|
break; |
|
|
|
|
case YAW: |
|
|
|
|
Log_Write_AutoTune(axis, tune_type, target_rate, test_min, test_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max); |
|
|
|
|
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -694,13 +696,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
@@ -694,13 +696,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
|
|
|
|
|
case RD_UP: |
|
|
|
|
switch (axis) { |
|
|
|
|
case ROLL: |
|
|
|
|
updating_d_up(tune_roll_rd, g.autotune_min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max); |
|
|
|
|
updating_rate_d_up(tune_roll_rd, g.autotune_min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
case PITCH: |
|
|
|
|
updating_d_up(tune_pitch_rd, g.autotune_min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max); |
|
|
|
|
updating_rate_d_up(tune_pitch_rd, g.autotune_min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
case YAW: |
|
|
|
|
updating_d_up(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RLPF_MAX, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max); |
|
|
|
|
updating_rate_d_up(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RLPF_MAX, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
@ -708,13 +710,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
@@ -708,13 +710,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
|
|
|
|
|
case RD_DOWN: |
|
|
|
|
switch (axis) { |
|
|
|
|
case ROLL: |
|
|
|
|
updating_d_down(tune_roll_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max); |
|
|
|
|
updating_rate_d_down(tune_roll_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
case PITCH: |
|
|
|
|
updating_d_down(tune_pitch_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max); |
|
|
|
|
updating_rate_d_down(tune_pitch_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
case YAW: |
|
|
|
|
updating_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max); |
|
|
|
|
updating_rate_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
@ -722,13 +724,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
@@ -722,13 +724,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
|
|
|
|
|
case RP_UP: |
|
|
|
|
switch (axis) { |
|
|
|
|
case ROLL: |
|
|
|
|
updating_p_up_d_down(tune_roll_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max); |
|
|
|
|
updating_rate_p_up_d_down(tune_roll_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
case PITCH: |
|
|
|
|
updating_p_up_d_down(tune_pitch_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max); |
|
|
|
|
updating_rate_p_up_d_down(tune_pitch_rd, g.autotune_min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
case YAW: |
|
|
|
|
updating_p_up_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_min, test_max); |
|
|
|
|
updating_rate_p_up_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
@ -736,13 +738,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
@@ -736,13 +738,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
|
|
|
|
|
case SP_DOWN: |
|
|
|
|
switch (axis) { |
|
|
|
|
case ROLL: |
|
|
|
|
updating_p_down(tune_roll_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_max); |
|
|
|
|
updating_angle_p_down(tune_roll_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
case PITCH: |
|
|
|
|
updating_p_down(tune_pitch_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_max); |
|
|
|
|
updating_angle_p_down(tune_pitch_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
case YAW: |
|
|
|
|
updating_p_down(tune_yaw_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_max); |
|
|
|
|
updating_angle_p_down(tune_yaw_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
@ -750,13 +752,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
@@ -750,13 +752,13 @@ void Copter::ModeAutoTune::autotune_attitude_control()
|
|
|
|
|
case SP_UP: |
|
|
|
|
switch (axis) { |
|
|
|
|
case ROLL: |
|
|
|
|
updating_p_up(tune_roll_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_max); |
|
|
|
|
updating_angle_p_up(tune_roll_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
case PITCH: |
|
|
|
|
updating_p_up(tune_pitch_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_max); |
|
|
|
|
updating_angle_p_up(tune_pitch_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
case YAW: |
|
|
|
|
updating_p_up(tune_yaw_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_max); |
|
|
|
|
updating_angle_p_up(tune_yaw_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max); |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
@ -1182,37 +1184,37 @@ inline bool Copter::ModeAutoTune::yaw_enabled() {
@@ -1182,37 +1184,37 @@ inline bool Copter::ModeAutoTune::yaw_enabled() {
|
|
|
|
|
return g.autotune_axis_bitmask & AUTOTUNE_AXIS_BITMASK_YAW; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// twitching_test - twitching tests
|
|
|
|
|
// twitching_test_rate - twitching tests
|
|
|
|
|
// update min and max and test for end conditions
|
|
|
|
|
void Copter::ModeAutoTune::twitching_test(float measurement, float target, float &measurement_min, float &measurement_max) |
|
|
|
|
void Copter::ModeAutoTune::twitching_test_rate(float rate, float rate_target_max, float &meas_rate_min, float &meas_rate_max) |
|
|
|
|
{ |
|
|
|
|
// capture maximum measurement
|
|
|
|
|
if (measurement > measurement_max) { |
|
|
|
|
// capture maximum rate
|
|
|
|
|
if (rate > meas_rate_max) { |
|
|
|
|
// the measurement is continuing to increase without stopping
|
|
|
|
|
measurement_max = measurement; |
|
|
|
|
measurement_min = measurement; |
|
|
|
|
meas_rate_max = rate; |
|
|
|
|
meas_rate_min = rate; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// capture minimum measurement after the measurement has peaked (aka "bounce back")
|
|
|
|
|
if ((measurement < measurement_min) && (measurement_max > target * 0.5f)) { |
|
|
|
|
if ((rate < meas_rate_min) && (meas_rate_max > rate_target_max * 0.5f)) { |
|
|
|
|
// the measurement is bouncing back
|
|
|
|
|
measurement_min = measurement; |
|
|
|
|
meas_rate_min = rate; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// calculate early stopping time based on the time it takes to get to 90%
|
|
|
|
|
if (measurement_max < target * 0.75f) { |
|
|
|
|
if (meas_rate_max < rate_target_max * 0.75f) { |
|
|
|
|
// the measurement not reached the 90% threshold yet
|
|
|
|
|
step_stop_time = step_start_time + (millis() - step_start_time) * 3.0f; |
|
|
|
|
step_stop_time = MIN(step_stop_time, step_start_time + AUTOTUNE_TESTING_STEP_TIMEOUT_MS); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (measurement_max > target) { |
|
|
|
|
// the measurement has passed the target
|
|
|
|
|
if (meas_rate_max > rate_target_max) { |
|
|
|
|
// the measured rate has passed the maximum target rate
|
|
|
|
|
step = UPDATE_GAINS; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) { |
|
|
|
|
// the measurement has passed 50% of the target and bounce back is larger than the threshold
|
|
|
|
|
if (meas_rate_max-meas_rate_min > meas_rate_max*g.autotune_aggressiveness) { |
|
|
|
|
// the measurement has passed 50% of the maximum rate and bounce back is larger than the threshold
|
|
|
|
|
step = UPDATE_GAINS; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -1222,11 +1224,73 @@ void Copter::ModeAutoTune::twitching_test(float measurement, float target, float
@@ -1222,11 +1224,73 @@ void Copter::ModeAutoTune::twitching_test(float measurement, float target, float
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// updating_d_up - increase D and adjust P to optimize the D term for a little bounce back
|
|
|
|
|
// twitching_test_angle - twitching tests
|
|
|
|
|
// update min and max and test for end conditions
|
|
|
|
|
void Copter::ModeAutoTune::twitching_test_angle(float angle, float rate, float angle_target_max, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max) |
|
|
|
|
{ |
|
|
|
|
// capture maximum angle
|
|
|
|
|
if (angle > meas_angle_max) { |
|
|
|
|
// the angle still increasing
|
|
|
|
|
meas_angle_max = angle; |
|
|
|
|
meas_angle_min = angle; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// capture minimum angle after we have reached a reasonable maximum angle
|
|
|
|
|
if ((angle < meas_angle_min) && (meas_angle_max > angle_target_max * 0.5f)) { |
|
|
|
|
// the measurement is bouncing back
|
|
|
|
|
meas_angle_min = angle; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// capture maximum rate
|
|
|
|
|
if (rate > meas_rate_max) { |
|
|
|
|
// the measurement is still increasing
|
|
|
|
|
meas_rate_max = rate; |
|
|
|
|
meas_rate_min = rate; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// capture minimum rate after we have reached maximum rate
|
|
|
|
|
if (rate < meas_rate_min) { |
|
|
|
|
// the measurement is still decreasing
|
|
|
|
|
meas_rate_min = rate; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// calculate early stopping time based on the time it takes to get to 90%
|
|
|
|
|
if (meas_angle_max < angle_target_max * 0.75f) { |
|
|
|
|
// the measurement not reached the 90% threshold yet
|
|
|
|
|
step_stop_time = step_start_time + (millis() - step_start_time) * 3.0f; |
|
|
|
|
step_stop_time = MIN(step_stop_time, step_start_time + AUTOTUNE_TESTING_STEP_TIMEOUT_MS); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (meas_angle_max > angle_target_max) { |
|
|
|
|
// the measurement has passed the maximum angle
|
|
|
|
|
step = UPDATE_GAINS; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (meas_angle_max-meas_angle_min > meas_angle_max*g.autotune_aggressiveness) { |
|
|
|
|
// the measurement has passed 50% of the maximum angle and bounce back is larger than the threshold
|
|
|
|
|
step = UPDATE_GAINS; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (millis() >= step_stop_time) { |
|
|
|
|
// we have passed the maximum stop time
|
|
|
|
|
step = UPDATE_GAINS; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// twitching_measure_acceleration - measure rate of change of measurement
|
|
|
|
|
void Copter::ModeAutoTune::twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) |
|
|
|
|
{ |
|
|
|
|
if (rate_measurement_max < rate_measurement) { |
|
|
|
|
rate_measurement_max = rate_measurement; |
|
|
|
|
rate_of_change = (1000.0f*rate_measurement_max)/(millis() - step_start_time); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// updating_rate_d_up - increase D and adjust P to optimize the D term for a little bounce back
|
|
|
|
|
// optimize D term while keeping the maximum just below the target by adjusting P
|
|
|
|
|
void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max) |
|
|
|
|
void Copter::ModeAutoTune::updating_rate_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max) |
|
|
|
|
{ |
|
|
|
|
if (measurement_max > target) { |
|
|
|
|
if (meas_rate_max > rate_target) { |
|
|
|
|
// if maximum measurement was higher than target
|
|
|
|
|
// reduce P gain (which should reduce maximum)
|
|
|
|
|
tune_p -= tune_p*tune_p_step_ratio; |
|
|
|
@ -1241,7 +1305,7 @@ void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float
@@ -1241,7 +1305,7 @@ void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float
|
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
}else if ((measurement_max < target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { |
|
|
|
|
}else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { |
|
|
|
|
// we have not achieved a high enough maximum to get a good measurement of bounce back.
|
|
|
|
|
// increase P gain (which should increase maximum)
|
|
|
|
|
tune_p += tune_p*tune_p_step_ratio; |
|
|
|
@ -1251,7 +1315,7 @@ void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float
@@ -1251,7 +1315,7 @@ void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float
|
|
|
|
|
} |
|
|
|
|
}else{ |
|
|
|
|
// we have a good measurement of bounce back
|
|
|
|
|
if (measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) { |
|
|
|
|
if (meas_rate_max-meas_rate_min > meas_rate_max*g.autotune_aggressiveness) { |
|
|
|
|
// ignore the next result unless it is the same as this one
|
|
|
|
|
ignore_next = true; |
|
|
|
|
// bounce back is bigger than our threshold so increment the success counter
|
|
|
|
@ -1277,11 +1341,11 @@ void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float
@@ -1277,11 +1341,11 @@ void Copter::ModeAutoTune::updating_d_up(float &tune_d, float tune_d_min, float
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// updating_d_down - decrease D and adjust P to optimize the D term for no bounce back
|
|
|
|
|
// updating_rate_d_down - decrease D and adjust P to optimize the D term for no bounce back
|
|
|
|
|
// optimize D term while keeping the maximum just below the target by adjusting P
|
|
|
|
|
void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max) |
|
|
|
|
void Copter::ModeAutoTune::updating_rate_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max) |
|
|
|
|
{ |
|
|
|
|
if (measurement_max > target) { |
|
|
|
|
if (meas_rate_max > rate_target) { |
|
|
|
|
// if maximum measurement was higher than target
|
|
|
|
|
// reduce P gain (which should reduce maximum)
|
|
|
|
|
tune_p -= tune_p*tune_p_step_ratio; |
|
|
|
@ -1296,7 +1360,7 @@ void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, floa
@@ -1296,7 +1360,7 @@ void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, floa
|
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
}else if ((measurement_max < target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { |
|
|
|
|
}else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) { |
|
|
|
|
// we have not achieved a high enough maximum to get a good measurement of bounce back.
|
|
|
|
|
// increase P gain (which should increase maximum)
|
|
|
|
|
tune_p += tune_p*tune_p_step_ratio; |
|
|
|
@ -1306,7 +1370,7 @@ void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, floa
@@ -1306,7 +1370,7 @@ void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, floa
|
|
|
|
|
} |
|
|
|
|
}else{ |
|
|
|
|
// we have a good measurement of bounce back
|
|
|
|
|
if (measurement_max-measurement_min < measurement_max*g.autotune_aggressiveness) { |
|
|
|
|
if (meas_rate_max-meas_rate_min < meas_rate_max*g.autotune_aggressiveness) { |
|
|
|
|
if (ignore_next == false) { |
|
|
|
|
// bounce back is less than our threshold so increment the success counter
|
|
|
|
|
counter++; |
|
|
|
@ -1332,44 +1396,36 @@ void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, floa
@@ -1332,44 +1396,36 @@ void Copter::ModeAutoTune::updating_d_down(float &tune_d, float tune_d_min, floa
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// updating_p_down - decrease P until we don't reach the target before time out
|
|
|
|
|
// P is decreased to ensure we are not overshooting the target
|
|
|
|
|
void Copter::ModeAutoTune::updating_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float target, float measurement_max) |
|
|
|
|
// updating_rate_p_up_d_down - increase P to ensure the target is reached while checking bounce back isn't increasing
|
|
|
|
|
// P is increased until we achieve our target within a reasonable time while reducing D if bounce back increases above the threshold
|
|
|
|
|
void Copter::ModeAutoTune::updating_rate_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max) |
|
|
|
|
{ |
|
|
|
|
if (measurement_max < target*(1+0.5f*g.autotune_aggressiveness)) { |
|
|
|
|
if (ignore_next == false) { |
|
|
|
|
// if maximum measurement was lower than target so increment the success counter
|
|
|
|
|
counter++; |
|
|
|
|
} else { |
|
|
|
|
ignore_next = false; |
|
|
|
|
} |
|
|
|
|
}else{ |
|
|
|
|
if (meas_rate_max > rate_target*(1+0.5f*g.autotune_aggressiveness)) { |
|
|
|
|
// ignore the next result unless it is the same as this one
|
|
|
|
|
ignore_next = true; |
|
|
|
|
// if maximum measurement was higher than target so decrement the success counter
|
|
|
|
|
// if maximum measurement was greater than target so increment the success counter
|
|
|
|
|
counter++; |
|
|
|
|
} else if ((meas_rate_max < rate_target) && (meas_rate_max > rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (meas_rate_max-meas_rate_min > meas_rate_max*g.autotune_aggressiveness) && (tune_d > tune_d_min)) { |
|
|
|
|
// if bounce back was larger than the threshold so decrement the success counter
|
|
|
|
|
if (counter > 0 ) { |
|
|
|
|
counter--; |
|
|
|
|
} |
|
|
|
|
// decrease P gain (which should decrease the maximum)
|
|
|
|
|
// decrease D gain (which should decrease bounce back)
|
|
|
|
|
tune_d -= tune_d*tune_d_step_ratio; |
|
|
|
|
// do not decrease the D term past the minimum
|
|
|
|
|
if (tune_d <= tune_d_min) { |
|
|
|
|
tune_d = tune_d_min; |
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
} |
|
|
|
|
// decrease P gain to match D gain reduction
|
|
|
|
|
tune_p -= tune_p*tune_p_step_ratio; |
|
|
|
|
// stop tuning if we hit maximum P
|
|
|
|
|
// do not decrease the P term past the minimum
|
|
|
|
|
if (tune_p <= tune_p_min) { |
|
|
|
|
tune_p = tune_p_min; |
|
|
|
|
counter = AUTOTUNE_SUCCESS_COUNT; |
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// updating_p_up - increase P to ensure the target is reached
|
|
|
|
|
// P is increased until we achieve our target within a reasonable time
|
|
|
|
|
void Copter::ModeAutoTune::updating_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float target, float measurement_max) |
|
|
|
|
{ |
|
|
|
|
if (measurement_max > target*(1+0.5f*g.autotune_aggressiveness)) { |
|
|
|
|
// ignore the next result unless it is the same as this one
|
|
|
|
|
ignore_next = 1; |
|
|
|
|
// if maximum measurement was greater than target so increment the success counter
|
|
|
|
|
counter++; |
|
|
|
|
// cancel change in direction
|
|
|
|
|
positive_direction = !positive_direction; |
|
|
|
|
}else{ |
|
|
|
|
if (ignore_next == false) { |
|
|
|
|
// if maximum measurement was lower than target so decrement the success counter
|
|
|
|
@ -1390,36 +1446,44 @@ void Copter::ModeAutoTune::updating_p_up(float &tune_p, float tune_p_max, float
@@ -1390,36 +1446,44 @@ void Copter::ModeAutoTune::updating_p_up(float &tune_p, float tune_p_max, float
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// updating_p_up - increase P to ensure the target is reached while checking bounce back isn't increasing
|
|
|
|
|
// P is increased until we achieve our target within a reasonable time while reducing D if bounce back increases above the threshold
|
|
|
|
|
void Copter::ModeAutoTune::updating_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max) |
|
|
|
|
// updating_angle_p_down - decrease P until we don't reach the target before time out
|
|
|
|
|
// P is decreased to ensure we are not overshooting the target
|
|
|
|
|
void Copter::ModeAutoTune::updating_angle_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max) |
|
|
|
|
{ |
|
|
|
|
if (measurement_max > target*(1+0.5f*g.autotune_aggressiveness)) { |
|
|
|
|
if ((meas_angle_max < angle_target*(1+0.5f*g.autotune_aggressiveness)) && (meas_rate_min > -meas_rate_max*g.autotune_aggressiveness)) { |
|
|
|
|
if (ignore_next == false) { |
|
|
|
|
// if maximum measurement was lower than target so increment the success counter
|
|
|
|
|
counter++; |
|
|
|
|
} else { |
|
|
|
|
ignore_next = false; |
|
|
|
|
} |
|
|
|
|
}else{ |
|
|
|
|
// ignore the next result unless it is the same as this one
|
|
|
|
|
ignore_next = true; |
|
|
|
|
// if maximum measurement was greater than target so increment the success counter
|
|
|
|
|
counter++; |
|
|
|
|
} else if ((measurement_max < target) && (measurement_max > target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) && (tune_d > tune_d_min)) { |
|
|
|
|
// if bounce back was larger than the threshold so decrement the success counter
|
|
|
|
|
// if maximum measurement was higher than target so decrement the success counter
|
|
|
|
|
if (counter > 0 ) { |
|
|
|
|
counter--; |
|
|
|
|
} |
|
|
|
|
// decrease D gain (which should decrease bounce back)
|
|
|
|
|
tune_d -= tune_d*tune_d_step_ratio; |
|
|
|
|
// stop tuning if we hit minimum D
|
|
|
|
|
if (tune_d <= tune_d_min) { |
|
|
|
|
tune_d = tune_d_min; |
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
} |
|
|
|
|
// decrease P gain to match D gain reduction
|
|
|
|
|
// decrease P gain (which should decrease the maximum)
|
|
|
|
|
tune_p -= tune_p*tune_p_step_ratio; |
|
|
|
|
// stop tuning if we hit minimum P
|
|
|
|
|
// stop tuning if we hit maximum P
|
|
|
|
|
if (tune_p <= tune_p_min) { |
|
|
|
|
tune_p = tune_p_min; |
|
|
|
|
counter = AUTOTUNE_SUCCESS_COUNT; |
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
} |
|
|
|
|
// cancel change in direction
|
|
|
|
|
positive_direction = !positive_direction; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// updating_angle_p_up - increase P to ensure the target is reached
|
|
|
|
|
// P is increased until we achieve our target within a reasonable time
|
|
|
|
|
void Copter::ModeAutoTune::updating_angle_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max) |
|
|
|
|
{ |
|
|
|
|
if ((meas_angle_max > angle_target*(1+0.5f*g.autotune_aggressiveness)) || (meas_rate_min < -meas_rate_max*g.autotune_aggressiveness)) { |
|
|
|
|
// ignore the next result unless it is the same as this one
|
|
|
|
|
ignore_next = 1; |
|
|
|
|
// if maximum measurement was greater than target so increment the success counter
|
|
|
|
|
counter++; |
|
|
|
|
}else{ |
|
|
|
|
if (ignore_next == false) { |
|
|
|
|
// if maximum measurement was lower than target so decrement the success counter
|
|
|
|
@ -1440,15 +1504,6 @@ void Copter::ModeAutoTune::updating_p_up_d_down(float &tune_d, float tune_d_min,
@@ -1440,15 +1504,6 @@ void Copter::ModeAutoTune::updating_p_up_d_down(float &tune_d, float tune_d_min,
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// twitching_measure_acceleration - measure rate of change of measurement
|
|
|
|
|
void Copter::ModeAutoTune::twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) |
|
|
|
|
{ |
|
|
|
|
if (rate_measurement_max < rate_measurement) { |
|
|
|
|
rate_measurement_max = rate_measurement; |
|
|
|
|
rate_of_change = (1000.0f*rate_measurement_max)/(millis() - step_start_time); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// get attitude for slow position hold in autotune mode
|
|
|
|
|
void Copter::ModeAutoTune::get_poshold_attitude(float &roll_cd_out, float &pitch_cd_out, float &yaw_cd_out) |
|
|
|
|
{ |
|
|
|
|