|
|
|
@ -33,6 +33,7 @@ void AC_Avoid::adjust_velocity(const float kP, const float accel_cmss, Vector2f
@@ -33,6 +33,7 @@ void AC_Avoid::adjust_velocity(const float kP, const float accel_cmss, Vector2f
|
|
|
|
|
|
|
|
|
|
if (_enabled == AC_AVOID_STOP_AT_FENCE) { |
|
|
|
|
adjust_velocity_circle(kP, accel_cmss_limited, desired_vel); |
|
|
|
|
adjust_velocity_poly(kP, accel_cmss_limited, desired_vel); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -77,6 +78,86 @@ void AC_Avoid::adjust_velocity_circle(const float kP, const float accel_cmss, Ve
@@ -77,6 +78,86 @@ void AC_Avoid::adjust_velocity_circle(const float kP, const float accel_cmss, Ve
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Adjusts the desired velocity for the polygon fence. |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
void AC_Avoid::adjust_velocity_poly(const float kP, const float accel_cmss, Vector2f &desired_vel) |
|
|
|
|
{ |
|
|
|
|
// exit if the polygon fence is not enabled
|
|
|
|
|
if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// exit if the polygon fence has already been breached
|
|
|
|
|
if ((_fence.get_breaches() & AC_FENCE_TYPE_POLYGON) != 0) { |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// get polygon boundary
|
|
|
|
|
// Note: first point in list is the return-point (which copter does not use)
|
|
|
|
|
uint16_t num_points; |
|
|
|
|
Vector2f* boundary = _fence.get_polygon_points(num_points); |
|
|
|
|
|
|
|
|
|
// exit if there are no points
|
|
|
|
|
if (boundary == NULL || num_points == 0) { |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// do not adjust velocity if vehicle is outside the polygon fence
|
|
|
|
|
const Vector3f& position = _inav.get_position(); |
|
|
|
|
Vector2f position_xy(position.x, position.y); |
|
|
|
|
if (_fence.boundary_breached(position_xy, num_points, boundary)) { |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Safe_vel will be adjusted to remain within fence.
|
|
|
|
|
// We need a separate vector in case adjustment fails,
|
|
|
|
|
// e.g. if we are exactly on the boundary.
|
|
|
|
|
Vector2f safe_vel(desired_vel); |
|
|
|
|
|
|
|
|
|
uint16_t i, j; |
|
|
|
|
for (i = 1, j = num_points-1; i < num_points; j = i++) { |
|
|
|
|
// end points of current edge
|
|
|
|
|
Vector2f start = boundary[j]; |
|
|
|
|
Vector2f end = boundary[i]; |
|
|
|
|
// vector from current position to closest point on current edge
|
|
|
|
|
Vector2f limit_direction = closest_point(position_xy, start, end) - position_xy; |
|
|
|
|
// distance to closest point
|
|
|
|
|
const float limit_distance = limit_direction.length(); |
|
|
|
|
if (!is_zero(limit_distance)) { |
|
|
|
|
// We are strictly inside the given edge.
|
|
|
|
|
// Adjust velocity to not violate this edge.
|
|
|
|
|
limit_direction /= limit_distance; |
|
|
|
|
limit_velocity(kP, accel_cmss, safe_vel, limit_direction, limit_distance); |
|
|
|
|
} else { |
|
|
|
|
// We are exactly on the edge - treat this as a fence breach.
|
|
|
|
|
// i.e. do not adjust velocity.
|
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
desired_vel = safe_vel; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Limits the component of desired_vel in the direction of the unit vector |
|
|
|
|
* limit_direction to be at most the maximum speed permitted by the limit_distance. |
|
|
|
|
* |
|
|
|
|
* Uses velocity adjustment idea from Randy's second email on this thread: |
|
|
|
|
* https://groups.google.com/forum/#!searchin/drones-discuss/obstacle/drones-discuss/QwUXz__WuqY/qo3G8iTLSJAJ
|
|
|
|
|
*/ |
|
|
|
|
void AC_Avoid::limit_velocity(const float kP, const float accel_cmss, Vector2f &desired_vel, const Vector2f limit_direction, const float limit_distance) const |
|
|
|
|
{ |
|
|
|
|
const float max_speed = get_max_speed(kP, accel_cmss, limit_distance - get_margin()); |
|
|
|
|
// project onto limit direction
|
|
|
|
|
const float speed = desired_vel * limit_direction; |
|
|
|
|
if (speed > max_speed) { |
|
|
|
|
// subtract difference between desired speed and maximum acceptable speed
|
|
|
|
|
desired_vel += limit_direction*(max_speed - speed); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Gets the current xy-position, relative to home (not relative to EKF origin) |
|
|
|
|
*/ |
|
|
|
@ -120,3 +201,31 @@ float AC_Avoid::get_stopping_distance(const float kP, const float accel_cmss, co
@@ -120,3 +201,31 @@ float AC_Avoid::get_stopping_distance(const float kP, const float accel_cmss, co
|
|
|
|
|
return linear_distance + (speed*speed)/(2.0f*accel_cmss); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Returns the point closest to p on the line segment (v,w). |
|
|
|
|
* |
|
|
|
|
* Comments and implementation taken from |
|
|
|
|
* http://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment
|
|
|
|
|
*/ |
|
|
|
|
Vector2f AC_Avoid::closest_point(Vector2f p, Vector2f v, Vector2f w) const |
|
|
|
|
{ |
|
|
|
|
// length squared of line segment
|
|
|
|
|
const float l2 = (v - w).length_squared(); |
|
|
|
|
if (is_zero(l2)) { |
|
|
|
|
// v == w case
|
|
|
|
|
return v; |
|
|
|
|
} |
|
|
|
|
// Consider the line extending the segment, parameterized as v + t (w - v).
|
|
|
|
|
// We find projection of point p onto the line.
|
|
|
|
|
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
|
|
|
|
|
// We clamp t from [0,1] to handle points outside the segment vw.
|
|
|
|
|
const float t = ((p - v) * (w - v)) / l2; |
|
|
|
|
if (t <= 0) { |
|
|
|
|
return v; |
|
|
|
|
} else if (t >= 1) { |
|
|
|
|
return w; |
|
|
|
|
} else { |
|
|
|
|
return v + (w - v)*t; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|