2 changed files with 698 additions and 0 deletions
@ -0,0 +1,554 @@
@@ -0,0 +1,554 @@
|
||||
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
/*
|
||||
* This program is free software: you can redistribute it and/or modify |
||||
* it under the terms of the GNU General Public License as published by |
||||
* the Free Software Foundation, either version 3 of the License, or |
||||
* (at your option) any later version. |
||||
* |
||||
* This program is distributed in the hope that it will be useful, |
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
* GNU General Public License for more details. |
||||
* |
||||
* You should have received a copy of the GNU General Public License |
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
|
||||
#include <stdlib.h> |
||||
#include <AP_HAL/AP_HAL.h> |
||||
|
||||
#include "AP_MotorsHeli_Dual.h" |
||||
|
||||
extern const AP_HAL::HAL& hal; |
||||
|
||||
const AP_Param::GroupInfo AP_MotorsHeli_Dual::var_info[] = { |
||||
AP_NESTEDGROUPINFO(AP_MotorsHeli, 0), |
||||
|
||||
// @Param: SV1_POS
|
||||
// @DisplayName: Servo 1 Position
|
||||
// @Description: Angular location of swash servo #1
|
||||
// @Range: -180 180
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli_Dual, _servo1_pos, AP_MOTORS_HELI_DUAL_SERVO1_POS), |
||||
|
||||
// @Param: SV2_POS
|
||||
// @DisplayName: Servo 2 Position
|
||||
// @Description: Angular location of swash servo #2
|
||||
// @Range: -180 180
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli_Dual, _servo2_pos, AP_MOTORS_HELI_DUAL_SERVO2_POS), |
||||
|
||||
// @Param: SV3_POS
|
||||
// @DisplayName: Servo 3 Position
|
||||
// @Description: Angular location of swash servo #3
|
||||
// @Range: -180 180
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli_Dual, _servo3_pos, AP_MOTORS_HELI_DUAL_SERVO3_POS), |
||||
|
||||
// @Param: SV4_POS
|
||||
// @DisplayName: Servo 4 Position
|
||||
// @Description: Angular location of swash servo #4
|
||||
// @Range: -180 180
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV4_POS", 4, AP_MotorsHeli_Dual, _servo4_pos, AP_MOTORS_HELI_DUAL_SERVO4_POS), |
||||
|
||||
// @Param: SV5_POS
|
||||
// @DisplayName: Servo 5 Position
|
||||
// @Description: Angular location of swash servo #5
|
||||
// @Range: -180 180
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV5_POS", 5, AP_MotorsHeli_Dual, _servo5_pos, AP_MOTORS_HELI_DUAL_SERVO5_POS), |
||||
|
||||
// @Param: SV6_POS
|
||||
// @DisplayName: Servo 6 Position
|
||||
// @Description: Angular location of swash servo #6
|
||||
// @Range: -180 180
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV6_POS", 6, AP_MotorsHeli_Dual, _servo6_pos, AP_MOTORS_HELI_DUAL_SERVO6_POS), |
||||
|
||||
// @Param: PHANG1
|
||||
// @DisplayName: Swashplate 1 Phase Angle Compensation
|
||||
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
|
||||
// @Range: -90 90
|
||||
// @Units: Degrees
|
||||
// @User: Advanced
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("PHANG1", 7, AP_MotorsHeli_Dual, _swash1_phase_angle, 0), |
||||
|
||||
// @Param: PHANG2
|
||||
// @DisplayName: Swashplate 2 Phase Angle Compensation
|
||||
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
|
||||
// @Range: -90 90
|
||||
// @Units: Degrees
|
||||
// @User: Advanced
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("PHANG2", 8, AP_MotorsHeli_Dual, _swash2_phase_angle, 0), |
||||
|
||||
// @Param: DUAL_MODE
|
||||
// @DisplayName: Dual Mode
|
||||
// @Description: Sets the dual mode of the heli, either as tandem or as transverse.
|
||||
// @Values: 0:Longitudinal, 1:Transverse
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("DUAL_MODE", 9, AP_MotorsHeli_Dual, _dual_mode, AP_MOTORS_HELI_DUAL_MODE_TANDEM), |
||||
|
||||
// @Param: DCP_SCALER
|
||||
// @DisplayName: Differential-Collective-Pitch Scaler
|
||||
// @Description: Scaling factor applied to the differential-collective-pitch
|
||||
// @Range: 0 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("DCP_SCALER", 10, AP_MotorsHeli_Dual, _dcp_scaler, AP_MOTORS_HELI_DUAL_DCP_SCALER), |
||||
|
||||
// @Param: DCP_YAW
|
||||
// @DisplayName: Differential-Collective-Pitch Yaw Mixing
|
||||
// @Description: Feed-forward compensation to automatically add yaw input when differential collective pitch is applied.
|
||||
// @Range: -10 10
|
||||
// @Increment: 0.1
|
||||
AP_GROUPINFO("DCP_YAW", 11, AP_MotorsHeli_Dual, _dcp_yaw_effect, 0), |
||||
|
||||
// @Param: YAW_SCALER
|
||||
// @DisplayName: Scaler for yaw mixing
|
||||
// @Description: Scaler for mixing yaw into roll or pitch.
|
||||
// @Range: -10 10
|
||||
// @Increment: 0.1
|
||||
AP_GROUPINFO("YAW_SCALER", 12, AP_MotorsHeli_Dual, _yaw_scaler, 1.0f), |
||||
|
||||
// @Param: RSC_PWM_MIN
|
||||
// @DisplayName: RSC PWM output miniumum
|
||||
// @Description: This sets the PWM output on RSC channel for maximum rotor speed
|
||||
// @Range: 0 2000
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("RSC_PWM_MIN", 13, AP_MotorsHeli_Dual, _rotor._pwm_min, 1000), |
||||
|
||||
// @Param: RSC_PWM_MAX
|
||||
// @DisplayName: RSC PWM output maxiumum
|
||||
// @Description: This sets the PWM output on RSC channel for miniumum rotor speed
|
||||
// @Range: 0 2000
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("RSC_PWM_MAX", 14, AP_MotorsHeli_Dual, _rotor._pwm_max, 2000), |
||||
|
||||
// @Param: RSC_PWM_REV
|
||||
// @DisplayName: RSC PWM reversal
|
||||
// @Description: This controls reversal of the RSC channel output
|
||||
// @Values: -1:Reversed,1:Normal
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("RSC_PWM_REV", 15, AP_MotorsHeli_Dual, _rotor._pwm_rev, 1), |
||||
|
||||
AP_GROUPEND |
||||
}; |
||||
|
||||
// set update rate to motors - a value in hertz
|
||||
void AP_MotorsHeli_Dual::set_update_rate( uint16_t speed_hz ) |
||||
{ |
||||
// record requested speed
|
||||
_speed_hz = speed_hz; |
||||
|
||||
// setup fast channels
|
||||
uint32_t mask = |
||||
1U << AP_MOTORS_MOT_1 | |
||||
1U << AP_MOTORS_MOT_2 | |
||||
1U << AP_MOTORS_MOT_3 | |
||||
1U << AP_MOTORS_MOT_4 | |
||||
1U << AP_MOTORS_MOT_5 | |
||||
1U << AP_MOTORS_MOT_6; |
||||
|
||||
rc_set_freq(mask, _speed_hz); |
||||
} |
||||
|
||||
// enable - starts allowing signals to be sent to motors
|
||||
void AP_MotorsHeli_Dual::enable() |
||||
{ |
||||
// enable output channels
|
||||
rc_enable_ch(AP_MOTORS_MOT_1); |
||||
rc_enable_ch(AP_MOTORS_MOT_2); |
||||
rc_enable_ch(AP_MOTORS_MOT_3); |
||||
rc_enable_ch(AP_MOTORS_MOT_4); |
||||
rc_enable_ch(AP_MOTORS_MOT_5); |
||||
rc_enable_ch(AP_MOTORS_MOT_6); |
||||
|
||||
rc_enable_ch(AP_MOTORS_HELI_DUAL_RSC); |
||||
} |
||||
|
||||
// init_outputs
|
||||
bool AP_MotorsHeli_Dual::init_outputs() |
||||
{ |
||||
if (!_flags.initialised_ok) { |
||||
_swash_servo_1 = SRV_Channels::get_channel_for(SRV_Channel::k_motor1, CH_1); |
||||
_swash_servo_2 = SRV_Channels::get_channel_for(SRV_Channel::k_motor2, CH_2); |
||||
_swash_servo_3 = SRV_Channels::get_channel_for(SRV_Channel::k_motor3, CH_3); |
||||
_swash_servo_4 = SRV_Channels::get_channel_for(SRV_Channel::k_motor4, CH_4); |
||||
_swash_servo_5 = SRV_Channels::get_channel_for(SRV_Channel::k_motor5, CH_5); |
||||
_swash_servo_6 = SRV_Channels::get_channel_for(SRV_Channel::k_motor6, CH_6); |
||||
if (!_swash_servo_1 || !_swash_servo_2 || !_swash_servo_3 || |
||||
!_swash_servo_4 || !_swash_servo_5 || !_swash_servo_6) { |
||||
return false; |
||||
} |
||||
} |
||||
|
||||
// reset swash servo range and endpoints
|
||||
reset_swash_servo (_swash_servo_1); |
||||
reset_swash_servo (_swash_servo_2); |
||||
reset_swash_servo (_swash_servo_3); |
||||
reset_swash_servo (_swash_servo_4); |
||||
reset_swash_servo (_swash_servo_5); |
||||
reset_swash_servo (_swash_servo_6); |
||||
|
||||
// set rotor servo range
|
||||
_rotor.init_servo(); |
||||
|
||||
_flags.initialised_ok = true; |
||||
|
||||
return true; |
||||
} |
||||
|
||||
// output_test - spin a motor at the pwm value specified
|
||||
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
|
||||
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
|
||||
void AP_MotorsHeli_Dual::output_test(uint8_t motor_seq, int16_t pwm) |
||||
{ |
||||
// exit immediately if not armed
|
||||
if (!armed()) { |
||||
return; |
||||
} |
||||
|
||||
// output to motors and servos
|
||||
switch (motor_seq) { |
||||
case 1: |
||||
// swash servo 1
|
||||
rc_write(AP_MOTORS_MOT_1, pwm); |
||||
break; |
||||
case 2: |
||||
// swash servo 2
|
||||
rc_write(AP_MOTORS_MOT_2, pwm); |
||||
break; |
||||
case 3: |
||||
// swash servo 3
|
||||
rc_write(AP_MOTORS_MOT_3, pwm); |
||||
break; |
||||
case 4: |
||||
// swash servo 4
|
||||
rc_write(AP_MOTORS_MOT_4, pwm); |
||||
break; |
||||
case 5: |
||||
// swash servo 5
|
||||
rc_write(AP_MOTORS_MOT_5, pwm); |
||||
break; |
||||
case 6: |
||||
// swash servo 6
|
||||
rc_write(AP_MOTORS_MOT_6, pwm); |
||||
break; |
||||
case 7: |
||||
// main rotor
|
||||
rc_write(AP_MOTORS_HELI_DUAL_RSC, pwm); |
||||
break; |
||||
default: |
||||
// do nothing
|
||||
break; |
||||
} |
||||
} |
||||
|
||||
// set_desired_rotor_speed
|
||||
void AP_MotorsHeli_Dual::set_desired_rotor_speed(float desired_speed) |
||||
{ |
||||
_rotor.set_desired_speed(desired_speed); |
||||
} |
||||
|
||||
// calculate_armed_scalars
|
||||
void AP_MotorsHeli_Dual::calculate_armed_scalars() |
||||
{ |
||||
_rotor.set_ramp_time(_rsc_ramp_time); |
||||
_rotor.set_runup_time(_rsc_runup_time); |
||||
_rotor.set_critical_speed(_rsc_critical/1000.0f); |
||||
_rotor.set_idle_output(_rsc_idle_output/1000.0f); |
||||
_rotor.set_power_output_range(_rsc_power_low/1000.0f, _rsc_power_high/1000.0f, _rsc_power_high/1000.0f, 0); |
||||
} |
||||
|
||||
// calculate_scalars
|
||||
void AP_MotorsHeli_Dual::calculate_scalars() |
||||
{ |
||||
// range check collective min, max and mid
|
||||
if( _collective_min >= _collective_max ) { |
||||
_collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN; |
||||
_collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX; |
||||
} |
||||
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max); |
||||
|
||||
// calculate collective mid point as a number from 0 to 1000
|
||||
_collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min)); |
||||
|
||||
// calculate factors based on swash type and servo position
|
||||
calculate_roll_pitch_collective_factors(); |
||||
|
||||
// set mode of main rotor controller and trigger recalculation of scalars
|
||||
_rotor.set_control_mode(static_cast<RotorControlMode>(_rsc_mode.get())); |
||||
calculate_armed_scalars(); |
||||
} |
||||
|
||||
// calculate_swash_factors - calculate factors based on swash type and servo position
|
||||
void AP_MotorsHeli_Dual::calculate_roll_pitch_collective_factors() |
||||
{ |
||||
if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) { |
||||
// roll factors
|
||||
_rollFactor[CH_1] = _dcp_scaler; |
||||
_rollFactor[CH_2] = _dcp_scaler; |
||||
_rollFactor[CH_3] = _dcp_scaler; |
||||
|
||||
_rollFactor[CH_4] = -_dcp_scaler; |
||||
_rollFactor[CH_5] = -_dcp_scaler; |
||||
_rollFactor[CH_6] = -_dcp_scaler; |
||||
|
||||
// pitch factors
|
||||
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - _swash1_phase_angle)); |
||||
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - _swash1_phase_angle)); |
||||
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - _swash1_phase_angle)); |
||||
|
||||
_pitchFactor[CH_4] = cosf(radians(_servo4_pos - _swash2_phase_angle)); |
||||
_pitchFactor[CH_5] = cosf(radians(_servo5_pos - _swash2_phase_angle)); |
||||
_pitchFactor[CH_6] = cosf(radians(_servo6_pos - _swash2_phase_angle)); |
||||
|
||||
// yaw factors
|
||||
_yawFactor[CH_1] = cosf(radians(_servo1_pos + 180 - _swash1_phase_angle)) * _yaw_scaler; |
||||
_yawFactor[CH_2] = cosf(radians(_servo2_pos + 180 - _swash1_phase_angle)) * _yaw_scaler; |
||||
_yawFactor[CH_3] = cosf(radians(_servo3_pos + 180 - _swash1_phase_angle)) * _yaw_scaler; |
||||
|
||||
_yawFactor[CH_4] = cosf(radians(_servo4_pos - _swash2_phase_angle)) * _yaw_scaler; |
||||
_yawFactor[CH_5] = cosf(radians(_servo5_pos - _swash2_phase_angle)) * _yaw_scaler; |
||||
_yawFactor[CH_6] = cosf(radians(_servo6_pos - _swash2_phase_angle)) * _yaw_scaler; |
||||
} else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM
|
||||
// roll factors
|
||||
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _swash1_phase_angle)); |
||||
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _swash1_phase_angle)); |
||||
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _swash1_phase_angle)); |
||||
|
||||
_rollFactor[CH_4] = cosf(radians(_servo4_pos + 90 - _swash2_phase_angle)); |
||||
_rollFactor[CH_5] = cosf(radians(_servo5_pos + 90 - _swash2_phase_angle)); |
||||
_rollFactor[CH_6] = cosf(radians(_servo6_pos + 90 - _swash2_phase_angle)); |
||||
|
||||
// pitch factors
|
||||
_pitchFactor[CH_1] = _dcp_scaler; |
||||
_pitchFactor[CH_2] = _dcp_scaler; |
||||
_pitchFactor[CH_3] = _dcp_scaler; |
||||
|
||||
_pitchFactor[CH_4] = -_dcp_scaler; |
||||
_pitchFactor[CH_5] = -_dcp_scaler; |
||||
_pitchFactor[CH_6] = -_dcp_scaler; |
||||
|
||||
// yaw factors
|
||||
_yawFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _swash1_phase_angle)) * _yaw_scaler; |
||||
_yawFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _swash1_phase_angle)) * _yaw_scaler; |
||||
_yawFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _swash1_phase_angle)) * _yaw_scaler; |
||||
|
||||
_yawFactor[CH_4] = cosf(radians(_servo4_pos + 270 - _swash2_phase_angle)) * _yaw_scaler; |
||||
_yawFactor[CH_5] = cosf(radians(_servo5_pos + 270 - _swash2_phase_angle)) * _yaw_scaler; |
||||
_yawFactor[CH_6] = cosf(radians(_servo6_pos + 270 - _swash2_phase_angle)) * _yaw_scaler; |
||||
} |
||||
|
||||
// collective factors
|
||||
_collectiveFactor[CH_1] = 1; |
||||
_collectiveFactor[CH_2] = 1; |
||||
_collectiveFactor[CH_3] = 1; |
||||
|
||||
_collectiveFactor[CH_4] = 1; |
||||
_collectiveFactor[CH_5] = 1; |
||||
_collectiveFactor[CH_6] = 1; |
||||
} |
||||
|
||||
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
|
||||
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
||||
uint16_t AP_MotorsHeli_Dual::get_motor_mask() |
||||
{ |
||||
// dual heli uses channels 1,2,3,4,5,6 and 8
|
||||
return (1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << 4 | 1U << 5 | 1U << 6 | 1U << AP_MOTORS_HELI_DUAL_RSC); |
||||
} |
||||
|
||||
// update_motor_controls - sends commands to motor controllers
|
||||
void AP_MotorsHeli_Dual::update_motor_control(RotorControlState state) |
||||
{ |
||||
// Send state update to motors
|
||||
_rotor.output(state); |
||||
|
||||
if (state == ROTOR_CONTROL_STOP) { |
||||
// set engine run enable aux output to not run position to kill engine when disarmed
|
||||
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MIN); |
||||
} else { |
||||
// else if armed, set engine run enable output to run position
|
||||
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MAX); |
||||
} |
||||
|
||||
// Check if rotors are run-up
|
||||
_heliflags.rotor_runup_complete = _rotor.is_runup_complete(); |
||||
} |
||||
|
||||
//
|
||||
// move_actuators - moves swash plate to attitude of parameters passed in
|
||||
// - expected ranges:
|
||||
// roll : -4500 ~ 4500
|
||||
// pitch: -4500 ~ 4500
|
||||
// collective: 0 ~ 1000
|
||||
// yaw: -4500 ~ 4500
|
||||
//
|
||||
void AP_MotorsHeli_Dual::move_actuators(float roll_out, float pitch_out, float collective_in, float yaw_out) |
||||
{ |
||||
// initialize limits flag
|
||||
limit.roll_pitch = false; |
||||
limit.yaw = false; |
||||
limit.throttle_lower = false; |
||||
limit.throttle_upper = false; |
||||
|
||||
if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) { |
||||
if (pitch_out < -_cyclic_max/4500.0f) { |
||||
pitch_out = -_cyclic_max/4500.0f; |
||||
limit.roll_pitch = true; |
||||
} |
||||
|
||||
if (pitch_out > _cyclic_max/4500.0f) { |
||||
pitch_out = _cyclic_max/4500.0f; |
||||
limit.roll_pitch = true; |
||||
} |
||||
} else { |
||||
if (roll_out < -_cyclic_max/4500.0f) { |
||||
roll_out = -_cyclic_max/4500.0f; |
||||
limit.roll_pitch = true; |
||||
} |
||||
|
||||
if (roll_out > _cyclic_max/4500.0f) { |
||||
roll_out = _cyclic_max/4500.0f; |
||||
limit.roll_pitch = true; |
||||
} |
||||
} |
||||
|
||||
|
||||
float yaw_compensation = 0.0f; |
||||
|
||||
// if servo output not in manual mode, process pre-compensation factors
|
||||
if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) { |
||||
// add differential collective pitch yaw compensation
|
||||
if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) { |
||||
yaw_compensation = _dcp_yaw_effect * roll_out; |
||||
} else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM
|
||||
yaw_compensation = _dcp_yaw_effect * pitch_out; |
||||
} |
||||
yaw_out = yaw_out + yaw_compensation; |
||||
} |
||||
|
||||
// scale yaw and update limits
|
||||
if (yaw_out < -_cyclic_max/4500.0f) { |
||||
yaw_out = -_cyclic_max/4500.0f; |
||||
limit.yaw = true; |
||||
} |
||||
if (yaw_out > _cyclic_max/4500.0f) { |
||||
yaw_out = _cyclic_max/4500.0f; |
||||
limit.yaw = true; |
||||
} |
||||
|
||||
// constrain collective input
|
||||
float collective_out = collective_in; |
||||
if (collective_out <= 0.0f) { |
||||
collective_out = 0.0f; |
||||
limit.throttle_lower = true; |
||||
} |
||||
if (collective_out >= 1.0f) { |
||||
collective_out = 1.0f; |
||||
limit.throttle_upper = true; |
||||
} |
||||
|
||||
// ensure not below landed/landing collective
|
||||
if (_heliflags.landing_collective && collective_out < (_land_collective_min/1000.0f)) { |
||||
collective_out = _land_collective_min/1000.0f; |
||||
limit.throttle_lower = true; |
||||
} |
||||
|
||||
// scale collective pitch
|
||||
float collective_scaler = ((float)(_collective_max-_collective_min))/1000.0f; |
||||
float collective_out_scaled = collective_out * collective_scaler + (_collective_min - 1000)/1000.0f; |
||||
|
||||
// feed power estimate into main rotor controller
|
||||
// ToDo: add main rotor cyclic power?
|
||||
_rotor.set_motor_load(fabsf(collective_out - _collective_mid_pct)); |
||||
|
||||
// swashplate servos
|
||||
float servo1_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out + _yawFactor[CH_1] * yaw_out)/0.45f + _collectiveFactor[CH_1] * collective_out_scaled; |
||||
float servo2_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out + _yawFactor[CH_2] * yaw_out)/0.45f + _collectiveFactor[CH_2] * collective_out_scaled; |
||||
float servo3_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out + _yawFactor[CH_3] * yaw_out)/0.45f + _collectiveFactor[CH_3] * collective_out_scaled; |
||||
float servo4_out = (_rollFactor[CH_4] * roll_out + _pitchFactor[CH_4] * pitch_out + _yawFactor[CH_4] * yaw_out)/0.45f + _collectiveFactor[CH_4] * collective_out_scaled; |
||||
float servo5_out = (_rollFactor[CH_5] * roll_out + _pitchFactor[CH_5] * pitch_out + _yawFactor[CH_5] * yaw_out)/0.45f + _collectiveFactor[CH_5] * collective_out_scaled; |
||||
float servo6_out = (_rollFactor[CH_6] * roll_out + _pitchFactor[CH_6] * pitch_out + _yawFactor[CH_6] * yaw_out)/0.45f + _collectiveFactor[CH_6] * collective_out_scaled; |
||||
|
||||
// rescale from -1..1, so we can use the pwm calc that includes trim
|
||||
servo1_out = 2*servo1_out - 1; |
||||
servo2_out = 2*servo2_out - 1; |
||||
servo3_out = 2*servo3_out - 1; |
||||
servo4_out = 2*servo4_out - 1; |
||||
servo5_out = 2*servo5_out - 1; |
||||
servo6_out = 2*servo6_out - 1; |
||||
|
||||
// actually move the servos
|
||||
hal.rcout->cork(); |
||||
|
||||
rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(servo1_out, _swash_servo_1)); |
||||
rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(servo2_out, _swash_servo_2)); |
||||
rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(servo3_out, _swash_servo_3)); |
||||
rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(servo4_out, _swash_servo_4)); |
||||
rc_write(AP_MOTORS_MOT_5, calc_pwm_output_1to1(servo5_out, _swash_servo_5)); |
||||
rc_write(AP_MOTORS_MOT_6, calc_pwm_output_1to1(servo6_out, _swash_servo_6)); |
||||
|
||||
hal.rcout->push(); |
||||
} |
||||
|
||||
|
||||
// servo_test - move servos through full range of movement
|
||||
void AP_MotorsHeli_Dual::servo_test() |
||||
{ |
||||
// this test cycle is equivalent to that of AP_MotorsHeli_Single, but excluding
|
||||
// mixing of yaw, as that physical movement is represented by pitch and roll
|
||||
|
||||
_servo_test_cycle_time += 1.0f / _loop_rate; |
||||
|
||||
if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back
|
||||
(_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){ |
||||
_pitch_test += (1.0f / (_loop_rate/2)); |
||||
_oscillate_angle += 8 * M_PI / _loop_rate; |
||||
} else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around
|
||||
(_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){ |
||||
_oscillate_angle += M_PI / (2 * _loop_rate); |
||||
_roll_test = sinf(_oscillate_angle); |
||||
_pitch_test = cosf(_oscillate_angle); |
||||
} else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level
|
||||
(_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){ |
||||
_pitch_test -= (1.0f / (_loop_rate/2)); |
||||
_oscillate_angle += 8 * M_PI / _loop_rate; |
||||
} else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top
|
||||
_collective_test += (1.0f / _loop_rate); |
||||
_oscillate_angle += 2 * M_PI / _loop_rate; |
||||
} else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom
|
||||
_collective_test -= (1.0f / _loop_rate); |
||||
_oscillate_angle += 2 * M_PI / _loop_rate; |
||||
} else { // reset cycle
|
||||
_servo_test_cycle_time = 0.0f; |
||||
_oscillate_angle = 0.0f; |
||||
_collective_test = 0.0f; |
||||
_roll_test = 0.0f; |
||||
_pitch_test = 0.0f; |
||||
// decrement servo test cycle counter at the end of the cycle
|
||||
if (_servo_test_cycle_counter > 0){ |
||||
_servo_test_cycle_counter--; |
||||
} |
||||
} |
||||
|
||||
// over-ride servo commands to move servos through defined ranges
|
||||
|
||||
_throttle_in = _collective_test; |
||||
_roll_in = _roll_test; |
||||
_pitch_in = _pitch_test; |
||||
} |
@ -0,0 +1,144 @@
@@ -0,0 +1,144 @@
|
||||
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
|
||||
/// @file AP_MotorsHeli_Dual.h
|
||||
/// @brief Motor control class for dual heli (tandem or transverse)
|
||||
/// @author Fredrik Hedberg
|
||||
|
||||
#ifndef __AP_MOTORS_HELI_DUAL_H__ |
||||
#define __AP_MOTORS_HELI_DUAL_H__ |
||||
|
||||
#include <AP_Common/AP_Common.h> |
||||
#include <AP_Math/AP_Math.h> |
||||
#include <RC_Channel/RC_Channel.h> |
||||
|
||||
#include "AP_MotorsHeli.h" |
||||
#include "AP_MotorsHeli_RSC.h" |
||||
|
||||
// servo position defaults
|
||||
#define AP_MOTORS_HELI_DUAL_SERVO1_POS -60 |
||||
#define AP_MOTORS_HELI_DUAL_SERVO2_POS 60 |
||||
#define AP_MOTORS_HELI_DUAL_SERVO3_POS 180 |
||||
#define AP_MOTORS_HELI_DUAL_SERVO4_POS -60 |
||||
#define AP_MOTORS_HELI_DUAL_SERVO5_POS 60 |
||||
#define AP_MOTORS_HELI_DUAL_SERVO6_POS 180 |
||||
|
||||
// rsc function output channel
|
||||
#define AP_MOTORS_HELI_DUAL_RSC CH_8 |
||||
|
||||
// tandem modes
|
||||
#define AP_MOTORS_HELI_DUAL_MODE_TANDEM 0 // tandem mode (rotors front and aft)
|
||||
#define AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE 1 // transverse mode (rotors side by side)
|
||||
|
||||
// default differential-collective-pitch scaler
|
||||
#define AP_MOTORS_HELI_DUAL_DCP_SCALER 0.25f |
||||
|
||||
// maximum number of swashplate servos
|
||||
#define AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS 6 |
||||
|
||||
/// @class AP_MotorsHeli_Dual
|
||||
class AP_MotorsHeli_Dual : public AP_MotorsHeli { |
||||
public: |
||||
// constructor
|
||||
AP_MotorsHeli_Dual(uint16_t loop_rate, |
||||
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) : |
||||
AP_MotorsHeli(loop_rate, speed_hz), |
||||
_rotor(SRV_Channel::k_heli_rsc, AP_MOTORS_HELI_DUAL_RSC) |
||||
{ |
||||
AP_Param::setup_object_defaults(this, var_info); |
||||
}; |
||||
|
||||
// set_update_rate - set update rate to motors
|
||||
void set_update_rate( uint16_t speed_hz ) override; |
||||
|
||||
// enable - starts allowing signals to be sent to motors
|
||||
void enable() override; |
||||
|
||||
// output_test - spin a motor at the pwm value specified
|
||||
void output_test(uint8_t motor_seq, int16_t pwm) override; |
||||
|
||||
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000
|
||||
void set_desired_rotor_speed(float desired_speed) override; |
||||
|
||||
// get_estimated_rotor_speed - gets estimated rotor speed as a number from 0 ~ 1000
|
||||
float get_main_rotor_speed() const override { return _rotor.get_rotor_speed(); } |
||||
|
||||
// get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000
|
||||
float get_desired_rotor_speed() const override { return _rotor.get_rotor_speed(); } |
||||
|
||||
// rotor_speed_above_critical - return true if rotor speed is above that critical for flight
|
||||
bool rotor_speed_above_critical() const override { return _rotor.get_rotor_speed() > _rotor.get_critical_speed(); } |
||||
|
||||
// calculate_scalars - recalculates various scalars used
|
||||
void calculate_scalars() override; |
||||
|
||||
// calculate_armed_scalars - recalculates scalars that can change while armed
|
||||
void calculate_armed_scalars() override; |
||||
|
||||
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
|
||||
uint16_t get_motor_mask() override; |
||||
|
||||
// has_flybar - returns true if we have a mechical flybar
|
||||
bool has_flybar() const override { return AP_MOTORS_HELI_NOFLYBAR; } |
||||
|
||||
// supports_yaw_passthrought - returns true if we support yaw passthrough
|
||||
bool supports_yaw_passthrough() const override { return false; } |
||||
|
||||
// servo_test - move servos through full range of movement
|
||||
void servo_test() override; |
||||
|
||||
// var_info for holding Parameter information
|
||||
static const struct AP_Param::GroupInfo var_info[]; |
||||
|
||||
protected: |
||||
|
||||
// init_outputs
|
||||
bool init_outputs () override; |
||||
|
||||
// update_motor_controls - sends commands to motor controllers
|
||||
void update_motor_control(RotorControlState state) override; |
||||
|
||||
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
|
||||
void calculate_roll_pitch_collective_factors () override; |
||||
|
||||
// move_actuators - moves swash plate to attitude of parameters passed in
|
||||
void move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out) override; |
||||
|
||||
// objects we depend upon
|
||||
AP_MotorsHeli_RSC _rotor; // main rotor controller
|
||||
|
||||
// internal variables
|
||||
float _oscillate_angle = 0.0f; // cyclic oscillation angle, used by servo_test function
|
||||
float _servo_test_cycle_time = 0.0f; // cycle time tracker, used by servo_test function
|
||||
float _collective_test = 0.0f; // over-ride for collective output, used by servo_test function
|
||||
float _roll_test = 0.0f; // over-ride for roll output, used by servo_test function
|
||||
float _pitch_test = 0.0f; // over-ride for pitch output, used by servo_test function
|
||||
|
||||
// parameters
|
||||
AP_Int16 _servo1_pos; // angular location of swash servo #1
|
||||
AP_Int16 _servo2_pos; // angular location of swash servo #2
|
||||
AP_Int16 _servo3_pos; // angular location of swash servo #3
|
||||
AP_Int16 _servo4_pos; // angular location of swash servo #4
|
||||
AP_Int16 _servo5_pos; // angular location of swash servo #5
|
||||
AP_Int16 _servo6_pos; // angular location of swash servo #6
|
||||
AP_Int16 _swash1_phase_angle; // phase angle correction for 1st swash.
|
||||
AP_Int16 _swash2_phase_angle; // phase angle correction for 2nd swash.
|
||||
AP_Int8 _dual_mode; // which dual mode the heli is
|
||||
AP_Float _dcp_scaler; // scaling factor applied to the differential-collective-pitch
|
||||
AP_Float _dcp_yaw_effect; // feed-forward compensation to automatically add yaw input when differential collective pitch is applied.
|
||||
AP_Float _yaw_scaler; // scaling factor applied to the yaw mixing
|
||||
|
||||
SRV_Channel *_swash_servo_1; |
||||
SRV_Channel *_swash_servo_2; |
||||
SRV_Channel *_swash_servo_3; |
||||
SRV_Channel *_swash_servo_4; |
||||
SRV_Channel *_swash_servo_5; |
||||
SRV_Channel *_swash_servo_6; |
||||
|
||||
// internal variables
|
||||
float _rollFactor[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS]; |
||||
float _pitchFactor[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS]; |
||||
float _collectiveFactor[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS]; |
||||
float _yawFactor[AP_MOTORS_HELI_DUAL_NUM_SWASHPLATE_SERVOS]; |
||||
}; |
||||
|
||||
#endif // AP_MotorsHeli_Dual
|
Loading…
Reference in new issue