|
|
|
@ -19,58 +19,36 @@ extern const AP_HAL::HAL& hal;
@@ -19,58 +19,36 @@ extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
|
|
|
|
using namespace HALSITL; |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
setup the rangefinder with new input |
|
|
|
|
*/ |
|
|
|
|
void SITL_State::_update_rangefinder(float range_value) |
|
|
|
|
// returns a voltage between 0V to 5V which should appear as the
|
|
|
|
|
// voltage from the sensor
|
|
|
|
|
float SITL_State::_sonar_pin_voltage() const |
|
|
|
|
{ |
|
|
|
|
float altitude = range_value; |
|
|
|
|
if (is_equal(range_value, -1.0f)) { // Use SITL altitude as reading by default
|
|
|
|
|
altitude = _sitl->height_agl; |
|
|
|
|
// Use glitch defines as the probablility between 0-1 that any
|
|
|
|
|
// given sonar sample will read as max distance
|
|
|
|
|
if (!is_zero(_sitl->sonar_glitch) && |
|
|
|
|
_sitl->sonar_glitch >= (rand_float() + 1.0f) / 2.0f) { |
|
|
|
|
// glitched
|
|
|
|
|
return 5.0f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// sensor position offset in body frame
|
|
|
|
|
const Vector3f relPosSensorBF = _sitl->rngfnd_pos_offset; |
|
|
|
|
|
|
|
|
|
// adjust altitude for position of the sensor on the vehicle if position offset is non-zero
|
|
|
|
|
if (!relPosSensorBF.is_zero()) { |
|
|
|
|
// get a rotation matrix following DCM conventions (body to earth)
|
|
|
|
|
Matrix3f rotmat; |
|
|
|
|
_sitl->state.quaternion.rotation_matrix(rotmat); |
|
|
|
|
// rotate the offset into earth frame
|
|
|
|
|
const Vector3f relPosSensorEF = rotmat * relPosSensorBF; |
|
|
|
|
// correct the altitude at the sensor
|
|
|
|
|
altitude -= relPosSensorEF.z; |
|
|
|
|
const float altitude = sitl_model->rangefinder_range(); |
|
|
|
|
if (altitude == INFINITY) { |
|
|
|
|
return 5.0f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float voltage = 5.0f; // Start the reading at max value = 5V
|
|
|
|
|
// If the attidude is non reversed for SITL OR we are using rangefinder from external simulator,
|
|
|
|
|
// We adjust the reading with noise, glitch and scaler as the reading is on analog port.
|
|
|
|
|
if ((fabs(_sitl->state.rollDeg) < 90.0 && fabs(_sitl->state.pitchDeg) < 90.0) || !is_equal(range_value, -1.0f)) { |
|
|
|
|
if (is_equal(range_value, -1.0f)) { // disable for external reading that already handle this
|
|
|
|
|
// adjust for apparent altitude with roll
|
|
|
|
|
altitude /= cosf(radians(_sitl->state.rollDeg)) * cosf(radians(_sitl->state.pitchDeg)); |
|
|
|
|
} |
|
|
|
|
// Add some noise on reading
|
|
|
|
|
altitude += _sitl->sonar_noise * rand_float(); |
|
|
|
|
|
|
|
|
|
// Altitude in in m, scaler in meters/volt
|
|
|
|
|
voltage = altitude / _sitl->sonar_scale; |
|
|
|
|
// constrain to 0-5V
|
|
|
|
|
voltage = constrain_float(voltage, 0.0f, 5.0f); |
|
|
|
|
|
|
|
|
|
// Use glitch defines as the probablility between 0-1 that any given sonar sample will read as max distance
|
|
|
|
|
if (!is_zero(_sitl->sonar_glitch) && _sitl->sonar_glitch >= (rand_float() + 1.0f) / 2.0f) { |
|
|
|
|
voltage = 5.0f; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
// Altitude in in m, scaler in meters/volt
|
|
|
|
|
const float voltage = altitude / _sitl->sonar_scale; |
|
|
|
|
|
|
|
|
|
// if not populated also fill out the STIL rangefinder array
|
|
|
|
|
if (is_equal(_sitl->state.rangefinder_m[0],-1.0f)) { |
|
|
|
|
_sitl->state.rangefinder_m[0] = altitude; |
|
|
|
|
} |
|
|
|
|
// constrain to 0-5V
|
|
|
|
|
return constrain_float(voltage, 0.0f, 5.0f); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
sonar_pin_value = 1023 * (voltage / 5.0f); |
|
|
|
|
/*
|
|
|
|
|
setup the rangefinder with new input |
|
|
|
|
*/ |
|
|
|
|
void SITL_State::_update_rangefinder() |
|
|
|
|
{ |
|
|
|
|
sonar_pin_value = 1023 * (_sonar_pin_voltage() / 5.0f); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|