2 changed files with 433 additions and 0 deletions
@ -0,0 +1,429 @@
@@ -0,0 +1,429 @@
|
||||
#include<AP_Math.h> |
||||
#include <AP_HAL.h> |
||||
|
||||
extern const AP_HAL::HAL& hal; |
||||
|
||||
/*
|
||||
* generic matrix inverse code |
||||
* |
||||
* @param x, input nxn matrix |
||||
* @param n, dimension of square matrix |
||||
* @returns determinant of square matrix |
||||
* Known Issues/ Possible Enhancements: |
||||
* -more efficient method should be available, following is code generated from matlab |
||||
*/ |
||||
float detnxn(const float C[],const uint8_t n) |
||||
{ |
||||
float f; |
||||
float *A = new float[n*n]; |
||||
int8_t *ipiv = new int8_t[n]; |
||||
int32_t i0; |
||||
int32_t j; |
||||
int32_t c; |
||||
int32_t iy; |
||||
int32_t ix; |
||||
float smax; |
||||
int32_t jy; |
||||
float s; |
||||
int32_t b_j; |
||||
int32_t ijA; |
||||
bool isodd; |
||||
memcpy(&A[0], &C[0], n*n * sizeof(float)); |
||||
for (i0 = 0; i0 < n; i0++) { |
||||
ipiv[i0] = (int8_t)(1 + i0); |
||||
} |
||||
|
||||
for (j = 0; j < n-1; j++) { |
||||
c = j * (n+1); |
||||
iy = 0; |
||||
ix = c; |
||||
smax = fabs(A[c]); |
||||
for (jy = 2; jy <= n - 1 - j; jy++) { |
||||
ix++; |
||||
s = fabs(A[ix]); |
||||
if (s > smax) { |
||||
iy = jy - 1; |
||||
smax = s; |
||||
} |
||||
} |
||||
|
||||
if (A[c + iy] != 0.0) { |
||||
if (iy != 0) { |
||||
ipiv[j] = (int8_t)((j + iy) + 1); |
||||
ix = j; |
||||
iy += j; |
||||
for (jy = 0; jy < n; jy++) { |
||||
smax = A[ix]; |
||||
A[ix] = A[iy]; |
||||
A[iy] = smax; |
||||
ix += n; |
||||
iy += n; |
||||
} |
||||
} |
||||
|
||||
i0 = (c - j) + n; |
||||
for (iy = c + 1; iy + 1 <= i0; iy++) { |
||||
A[iy] /= A[c]; |
||||
} |
||||
} |
||||
|
||||
iy = c; |
||||
jy = c + n; |
||||
for (b_j = 1; b_j <= n - 1 - j; b_j++) { |
||||
smax = A[jy]; |
||||
if (A[jy] != 0.0) { |
||||
ix = c + 1; |
||||
i0 = (iy - j) + (2*n); |
||||
for (ijA = n + 1 + iy; ijA + 1 <= i0; ijA++) { |
||||
A[ijA] += A[ix] * -smax; |
||||
ix++; |
||||
} |
||||
} |
||||
|
||||
jy += n; |
||||
iy += n; |
||||
} |
||||
} |
||||
|
||||
f = A[0]; |
||||
isodd = false; |
||||
for (jy = 0; jy < (n-1); jy++) { |
||||
f *= A[(jy + n * (1 + jy)) + 1]; |
||||
if (ipiv[jy] > 1 + jy) { |
||||
isodd = !isodd; |
||||
} |
||||
} |
||||
|
||||
if (isodd) { |
||||
f = -f; |
||||
} |
||||
delete[] A; |
||||
delete[] ipiv; |
||||
return f; |
||||
} |
||||
/*
|
||||
* generic matrix inverse code |
||||
* |
||||
* @param x, input nxn matrix |
||||
* @param y, Output inverted nxn matrix |
||||
* @param n, dimension of square matrix |
||||
* @returns false = matrix is Singular, true = matrix inversion successful |
||||
* Known Issues/ Possible Enhancements: |
||||
* -more efficient method should be available, following is code generated from matlab |
||||
*/ |
||||
|
||||
bool inversenxn(const float x[], float y[], const uint8_t n) |
||||
{ |
||||
if(fabsf(detnxn(x,n)) < TINY_FLOAT) { |
||||
return false; |
||||
} |
||||
|
||||
float *A = new float[n*n]; |
||||
int32_t i0; |
||||
int32_t *ipiv = new int32_t[n]; |
||||
int32_t j; |
||||
int32_t c; |
||||
int32_t pipk; |
||||
int32_t ix; |
||||
float smax; |
||||
int32_t k; |
||||
float s; |
||||
int32_t jy; |
||||
int32_t ijA; |
||||
int32_t *p = new int32_t[n]; |
||||
for (i0 = 0; i0 < n*n; i0++) { |
||||
A[i0] = x[i0]; |
||||
y[i0] = 0.0f; |
||||
} |
||||
|
||||
for (i0 = 0; i0 < n; i0++) { |
||||
ipiv[i0] = (int32_t)(1 + i0); |
||||
} |
||||
|
||||
for (j = 0; j < (n-1); j++) { |
||||
c = j * (n+1); |
||||
pipk = 0; |
||||
ix = c; |
||||
smax = fabsf(A[c]); |
||||
for (k = 2; k <= (n-1) - j; k++) { |
||||
ix++; |
||||
s = fabsf(A[ix]); |
||||
if (s > smax) { |
||||
pipk = k - 1; |
||||
smax = s; |
||||
} |
||||
} |
||||
|
||||
if (A[c + pipk] != 0.0f) { |
||||
if (pipk != 0) { |
||||
ipiv[j] = (int32_t)((j + pipk) + 1); |
||||
ix = j; |
||||
pipk += j; |
||||
for (k = 0; k < n; k++) { |
||||
smax = A[ix]; |
||||
A[ix] = A[pipk]; |
||||
A[pipk] = smax; |
||||
ix += n; |
||||
pipk += n; |
||||
} |
||||
} |
||||
|
||||
i0 = (c - j) + n; |
||||
for (jy = c + 1; jy + 1 <= i0; jy++) { |
||||
A[jy] /= A[c]; |
||||
} |
||||
} |
||||
|
||||
pipk = c; |
||||
jy = c + n; |
||||
for (k = 1; k <= (n-1) - j; k++) { |
||||
smax = A[jy]; |
||||
if (A[jy] != 0.0f) { |
||||
ix = c + 1; |
||||
i0 = (pipk - j) + (2*n); |
||||
for (ijA = (n+1) + pipk; ijA + 1 <= i0; ijA++) { |
||||
A[ijA] += A[ix] * -smax; |
||||
ix++; |
||||
} |
||||
} |
||||
|
||||
jy += n; |
||||
pipk += n; |
||||
} |
||||
} |
||||
|
||||
for (i0 = 0; i0 < n; i0++) { |
||||
p[i0] = (int32_t)(1 + i0); |
||||
} |
||||
|
||||
for (k = 0; k < (n-1); k++) { |
||||
if (ipiv[k] > 1 + k) { |
||||
pipk = p[ipiv[k] - 1]; |
||||
p[ipiv[k] - 1] = p[k]; |
||||
p[k] = (int32_t)pipk; |
||||
} |
||||
} |
||||
|
||||
for (k = 0; k < n; k++) { |
||||
y[k + n * (p[k] - 1)] = 1.0; |
||||
for (j = k; j + 1 < (n+1); j++) { |
||||
if (y[j + n * (p[k] - 1)] != 0.0f) { |
||||
for (jy = j + 1; jy + 1 < (n+1); jy++) { |
||||
y[jy + n * (p[k] - 1)] -= y[j + n * (p[k] - 1)] * A[jy + n * j]; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
for (j = 0; j < n; j++) { |
||||
c = n * j; |
||||
for (k = (n-1); k > -1; k += -1) { |
||||
pipk = n * k; |
||||
if (y[k + c] != 0.0f) { |
||||
y[k + c] /= A[k + pipk]; |
||||
for (jy = 0; jy + 1 <= k; jy++) { |
||||
y[jy + c] -= y[k + c] * A[jy + pipk]; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
delete[] A; |
||||
delete[] ipiv; |
||||
delete[] p; |
||||
return true; |
||||
} |
||||
|
||||
/*
|
||||
* matrix inverse code only for 3x3 square matrix |
||||
* |
||||
* @param m, input 4x4 matrix |
||||
* @param invOut, Output inverted 4x4 matrix |
||||
* @returns false = matrix is Singular, true = matrix inversion successful |
||||
*/ |
||||
|
||||
bool inverse3x3(float m[], float invOut[]) |
||||
{ |
||||
float inv[9]; |
||||
// computes the inverse of a matrix m
|
||||
float det = m[0] * (m[4] * m[8] - m[7] * m[5]) - |
||||
m[1] * (m[3] * m[8] - m[5] * m[6]) + |
||||
m[2] * (m[3] * m[7] - m[4] * m[6]); |
||||
if(fabsf(det) < TINY_FLOAT){ |
||||
return false; |
||||
} |
||||
|
||||
float invdet = 1 / det; |
||||
|
||||
inv[0] = (m[4] * m[8] - m[7] * m[5]) * invdet; |
||||
inv[1] = (m[2] * m[7] - m[1] * m[8]) * invdet; |
||||
inv[2] = (m[1] * m[5] - m[2] * m[4]) * invdet; |
||||
inv[3] = (m[5] * m[6] - m[5] * m[8]) * invdet; |
||||
inv[4] = (m[0] * m[8] - m[2] * m[6]) * invdet; |
||||
inv[5] = (m[3] * m[2] - m[0] * m[5]) * invdet; |
||||
inv[6] = (m[3] * m[7] - m[6] * m[4]) * invdet; |
||||
inv[7] = (m[6] * m[1] - m[0] * m[7]) * invdet; |
||||
inv[8] = (m[0] * m[4] - m[3] * m[1]) * invdet; |
||||
|
||||
for(uint8_t i = 0; i < 9; i++){ |
||||
invOut[i] = inv[i]; |
||||
} |
||||
|
||||
return true; |
||||
} |
||||
|
||||
/*
|
||||
* matrix inverse code only for 4x4 square matrix copied from |
||||
* gluInvertMatrix implementation in |
||||
* opengl for 4x4 matrices. |
||||
* |
||||
* @param m, input 4x4 matrix |
||||
* @param invOut, Output inverted 4x4 matrix |
||||
* @returns false = matrix is Singular, true = matrix inversion successful |
||||
*/ |
||||
|
||||
bool inverse4x4(float m[],float invOut[]) |
||||
{ |
||||
float inv[16], det; |
||||
uint8_t i; |
||||
|
||||
inv[0] = m[5] * m[10] * m[15] - |
||||
m[5] * m[11] * m[14] - |
||||
m[9] * m[6] * m[15] + |
||||
m[9] * m[7] * m[14] + |
||||
m[13] * m[6] * m[11] - |
||||
m[13] * m[7] * m[10]; |
||||
|
||||
inv[4] = -m[4] * m[10] * m[15] + |
||||
m[4] * m[11] * m[14] + |
||||
m[8] * m[6] * m[15] - |
||||
m[8] * m[7] * m[14] - |
||||
m[12] * m[6] * m[11] + |
||||
m[12] * m[7] * m[10]; |
||||
|
||||
inv[8] = m[4] * m[9] * m[15] - |
||||
m[4] * m[11] * m[13] - |
||||
m[8] * m[5] * m[15] + |
||||
m[8] * m[7] * m[13] + |
||||
m[12] * m[5] * m[11] - |
||||
m[12] * m[7] * m[9]; |
||||
|
||||
inv[12] = -m[4] * m[9] * m[14] + |
||||
m[4] * m[10] * m[13] + |
||||
m[8] * m[5] * m[14] - |
||||
m[8] * m[6] * m[13] - |
||||
m[12] * m[5] * m[10] + |
||||
m[12] * m[6] * m[9]; |
||||
|
||||
inv[1] = -m[1] * m[10] * m[15] + |
||||
m[1] * m[11] * m[14] + |
||||
m[9] * m[2] * m[15] - |
||||
m[9] * m[3] * m[14] - |
||||
m[13] * m[2] * m[11] + |
||||
m[13] * m[3] * m[10]; |
||||
|
||||
inv[5] = m[0] * m[10] * m[15] - |
||||
m[0] * m[11] * m[14] - |
||||
m[8] * m[2] * m[15] + |
||||
m[8] * m[3] * m[14] + |
||||
m[12] * m[2] * m[11] - |
||||
m[12] * m[3] * m[10]; |
||||
|
||||
inv[9] = -m[0] * m[9] * m[15] + |
||||
m[0] * m[11] * m[13] + |
||||
m[8] * m[1] * m[15] - |
||||
m[8] * m[3] * m[13] - |
||||
m[12] * m[1] * m[11] + |
||||
m[12] * m[3] * m[9]; |
||||
|
||||
inv[13] = m[0] * m[9] * m[14] - |
||||
m[0] * m[10] * m[13] - |
||||
m[8] * m[1] * m[14] + |
||||
m[8] * m[2] * m[13] + |
||||
m[12] * m[1] * m[10] - |
||||
m[12] * m[2] * m[9]; |
||||
|
||||
inv[2] = m[1] * m[6] * m[15] - |
||||
m[1] * m[7] * m[14] - |
||||
m[5] * m[2] * m[15] + |
||||
m[5] * m[3] * m[14] + |
||||
m[13] * m[2] * m[7] - |
||||
m[13] * m[3] * m[6]; |
||||
|
||||
inv[6] = -m[0] * m[6] * m[15] + |
||||
m[0] * m[7] * m[14] + |
||||
m[4] * m[2] * m[15] - |
||||
m[4] * m[3] * m[14] - |
||||
m[12] * m[2] * m[7] + |
||||
m[12] * m[3] * m[6]; |
||||
|
||||
inv[10] = m[0] * m[5] * m[15] - |
||||
m[0] * m[7] * m[13] - |
||||
m[4] * m[1] * m[15] + |
||||
m[4] * m[3] * m[13] + |
||||
m[12] * m[1] * m[7] - |
||||
m[12] * m[3] * m[5]; |
||||
|
||||
inv[14] = -m[0] * m[5] * m[14] + |
||||
m[0] * m[6] * m[13] + |
||||
m[4] * m[1] * m[14] - |
||||
m[4] * m[2] * m[13] - |
||||
m[12] * m[1] * m[6] + |
||||
m[12] * m[2] * m[5]; |
||||
|
||||
inv[3] = -m[1] * m[6] * m[11] + |
||||
m[1] * m[7] * m[10] + |
||||
m[5] * m[2] * m[11] - |
||||
m[5] * m[3] * m[10] - |
||||
m[9] * m[2] * m[7] + |
||||
m[9] * m[3] * m[6]; |
||||
|
||||
inv[7] = m[0] * m[6] * m[11] - |
||||
m[0] * m[7] * m[10] - |
||||
m[4] * m[2] * m[11] + |
||||
m[4] * m[3] * m[10] + |
||||
m[8] * m[2] * m[7] - |
||||
m[8] * m[3] * m[6]; |
||||
|
||||
inv[11] = -m[0] * m[5] * m[11] + |
||||
m[0] * m[7] * m[9] + |
||||
m[4] * m[1] * m[11] - |
||||
m[4] * m[3] * m[9] - |
||||
m[8] * m[1] * m[7] + |
||||
m[8] * m[3] * m[5]; |
||||
|
||||
inv[15] = m[0] * m[5] * m[10] - |
||||
m[0] * m[6] * m[9] - |
||||
m[4] * m[1] * m[10] + |
||||
m[4] * m[2] * m[9] + |
||||
m[8] * m[1] * m[6] - |
||||
m[8] * m[2] * m[5]; |
||||
|
||||
det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12]; |
||||
|
||||
if(fabsf(det) < TINY_FLOAT){ |
||||
return false; |
||||
} |
||||
|
||||
det = 1.0f / det; |
||||
|
||||
for (i = 0; i < 16; i++) |
||||
invOut[i] = inv[i] * det; |
||||
return true; |
||||
} |
||||
|
||||
/*
|
||||
* generic matrix inverse code |
||||
* |
||||
* @param x, input nxn matrix |
||||
* @param y, Output inverted nxn matrix |
||||
* @param n, dimension of square matrix |
||||
* @returns false = matrix is Singular, true = matrix inversion successful |
||||
*/ |
||||
bool inverse(float x[], float y[], uint16_t dim) |
||||
{ |
||||
switch(dim){ |
||||
case 3: return inverse3x3(x,y); |
||||
case 4: return inverse4x4(x,y); |
||||
default: return inversenxn(x,y,dim); |
||||
} |
||||
} |
Loading…
Reference in new issue