|
|
|
@ -5,8 +5,8 @@
@@ -5,8 +5,8 @@
|
|
|
|
|
static void init_motors_out() |
|
|
|
|
{ |
|
|
|
|
#if INSTANT_PWM == 0 |
|
|
|
|
APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4) |
|
|
|
|
| _BV(MOT_5) | _BV(MOT_6) ); |
|
|
|
|
APM_RC.SetFastOutputChannels(_BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4) |
|
|
|
|
| _BV(MOT_5) | _BV(MOT_6)); |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -77,10 +77,10 @@ static void output_motors_armed()
@@ -77,10 +77,10 @@ static void output_motors_armed()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Tridge's stability patch |
|
|
|
|
for (int m = 0; m <= 6; m++) { |
|
|
|
|
for (int m = 0; m <= 6; m++){ |
|
|
|
|
int c = ch_of_mot(m); |
|
|
|
|
int c_opp = ch_of_mot(m^1); // m^1 is the opposite motor. c_opp is channel of opposite motor. |
|
|
|
|
if (motor_out[c] > out_max) { |
|
|
|
|
int c_opp = ch_of_mot(m ^ 1); // m ^ 1 is the opposite motor. c_opp is channel of opposite motor. |
|
|
|
|
if(motor_out[c] > out_max){ |
|
|
|
|
motor_out[c_opp] -= motor_out[c] - out_max; |
|
|
|
|
motor_out[c] = out_max; |
|
|
|
|
} |
|
|
|
@ -108,7 +108,7 @@ static void output_motors_armed()
@@ -108,7 +108,7 @@ static void output_motors_armed()
|
|
|
|
|
|
|
|
|
|
// this filter slows the acceleration of motors vs the deceleration |
|
|
|
|
// Idea by Denny Rowland to help with his Yaw issue |
|
|
|
|
for(int8_t m = 0; m <= 6; m++ ) { |
|
|
|
|
for(int8_t m = 0; m <= 6; m++){ |
|
|
|
|
int c = ch_of_mot(m); |
|
|
|
|
if(motor_filtered[c] < motor_out[c]){ |
|
|
|
|
motor_filtered[c] = (motor_out[c] + motor_filtered[c]) / 2; |
|
|
|
@ -143,7 +143,7 @@ static void output_motors_disarmed()
@@ -143,7 +143,7 @@ static void output_motors_disarmed()
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// fill the motor_out[] array for HIL use |
|
|
|
|
for (unsigned char i = 0; i < 8; i++) { |
|
|
|
|
for (unsigned char i = 0; i < 8; i++){ |
|
|
|
|
motor_out[i] = g.rc_3.radio_min; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -168,7 +168,6 @@ static void output_motor_test()
@@ -168,7 +168,6 @@ static void output_motor_test()
|
|
|
|
|
motor_out[MOT_6] = g.rc_3.radio_min; |
|
|
|
|
|
|
|
|
|
if(g.frame_orientation == X_FRAME){ |
|
|
|
|
|
|
|
|
|
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min); |
|
|
|
|
delay(4000); |
|
|
|
|
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100); |
|
|
|
@ -199,10 +198,7 @@ static void output_motor_test()
@@ -199,10 +198,7 @@ static void output_motor_test()
|
|
|
|
|
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100); |
|
|
|
|
delay(300); |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} else { /* PLUS_FRAME */ |
|
|
|
|
|
|
|
|
|
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min); |
|
|
|
|
delay(4000); |
|
|
|
|
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100); |
|
|
|
@ -234,8 +230,6 @@ static void output_motor_test()
@@ -234,8 +230,6 @@ static void output_motor_test()
|
|
|
|
|
delay(300); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]); |
|
|
|
|
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]); |
|
|
|
|
APM_RC.OutputCh(MOT_3, motor_out[MOT_3]); |
|
|
|
|