10 changed files with 6476 additions and 6402 deletions
@ -1,62 +1,62 @@
@@ -1,62 +1,62 @@
|
||||
#pragma once |
||||
|
||||
#include <AP_Arming/AP_Arming.h> |
||||
|
||||
class AP_Arming_Copter : public AP_Arming |
||||
{ |
||||
public: |
||||
friend class Copter; |
||||
friend class ToyMode; |
||||
|
||||
AP_Arming_Copter() : AP_Arming() |
||||
{ |
||||
// default REQUIRE parameter to 1 (Copter does not have an
|
||||
// actual ARMING_REQUIRE parameter)
|
||||
require.set_default((uint8_t)Required::YES_MIN_PWM); |
||||
} |
||||
|
||||
/* Do not allow copies */ |
||||
AP_Arming_Copter(const AP_Arming_Copter &other) = delete; |
||||
AP_Arming_Copter &operator=(const AP_Arming_Copter&) = delete; |
||||
|
||||
void update(void); |
||||
|
||||
bool rc_calibration_checks(bool display_failure) override; |
||||
|
||||
bool disarm() override; |
||||
bool arm(AP_Arming::Method method, bool do_arming_checks=true) override; |
||||
|
||||
protected: |
||||
|
||||
bool pre_arm_checks(bool display_failure) override; |
||||
bool pre_arm_ekf_attitude_check(); |
||||
bool pre_arm_terrain_check(bool display_failure); |
||||
bool proximity_checks(bool display_failure) const override; |
||||
bool arm_checks(AP_Arming::Method method) override; |
||||
|
||||
// mandatory checks that cannot be bypassed. This function will only be called if ARMING_CHECK is zero or arming forced
|
||||
bool mandatory_checks(bool display_failure) override; |
||||
|
||||
// NOTE! the following check functions *DO* call into AP_Arming:
|
||||
bool ins_checks(bool display_failure) override; |
||||
bool compass_checks(bool display_failure) override; |
||||
bool gps_checks(bool display_failure) override; |
||||
bool barometer_checks(bool display_failure) override; |
||||
bool board_voltage_checks(bool display_failure) override; |
||||
|
||||
// NOTE! the following check functions *DO NOT* call into AP_Arming!
|
||||
bool parameter_checks(bool display_failure); |
||||
bool motor_checks(bool display_failure); |
||||
bool pilot_throttle_checks(bool display_failure); |
||||
bool oa_checks(bool display_failure); |
||||
bool mandatory_gps_checks(bool display_failure); |
||||
|
||||
void set_pre_arm_check(bool b); |
||||
|
||||
private: |
||||
|
||||
// actually contains the pre-arm checks. This is wrapped so that
|
||||
// we can store away success/failure of the checks.
|
||||
bool run_pre_arm_checks(bool display_failure); |
||||
|
||||
}; |
||||
#pragma once |
||||
|
||||
#include <AP_Arming/AP_Arming.h> |
||||
|
||||
class AP_Arming_Copter : public AP_Arming |
||||
{ |
||||
public: |
||||
friend class Copter; |
||||
friend class ToyMode; |
||||
|
||||
AP_Arming_Copter() : AP_Arming() |
||||
{ |
||||
// default REQUIRE parameter to 1 (Copter does not have an
|
||||
// actual ARMING_REQUIRE parameter)
|
||||
require.set_default((uint8_t)Required::YES_MIN_PWM); |
||||
} |
||||
|
||||
/* Do not allow copies */ |
||||
AP_Arming_Copter(const AP_Arming_Copter &other) = delete; |
||||
AP_Arming_Copter &operator=(const AP_Arming_Copter&) = delete; |
||||
|
||||
void update(void); |
||||
|
||||
bool rc_calibration_checks(bool display_failure) override; |
||||
|
||||
bool disarm() override; |
||||
bool arm(AP_Arming::Method method, bool do_arming_checks=true) override; |
||||
|
||||
protected: |
||||
|
||||
bool pre_arm_checks(bool display_failure) override; |
||||
bool pre_arm_ekf_attitude_check(); |
||||
bool pre_arm_terrain_check(bool display_failure); |
||||
bool proximity_checks(bool display_failure) const override; |
||||
bool arm_checks(AP_Arming::Method method) override; |
||||
|
||||
// mandatory checks that cannot be bypassed. This function will only be called if ARMING_CHECK is zero or arming forced
|
||||
bool mandatory_checks(bool display_failure) override; |
||||
|
||||
// NOTE! the following check functions *DO* call into AP_Arming:
|
||||
bool ins_checks(bool display_failure) override; |
||||
bool compass_checks(bool display_failure) override; |
||||
bool gps_checks(bool display_failure) override; |
||||
bool barometer_checks(bool display_failure) override; |
||||
bool board_voltage_checks(bool display_failure) override; |
||||
|
||||
// NOTE! the following check functions *DO NOT* call into AP_Arming!
|
||||
bool parameter_checks(bool display_failure); |
||||
bool motor_checks(bool display_failure); |
||||
bool pilot_throttle_checks(bool display_failure); |
||||
bool oa_checks(bool display_failure); |
||||
bool mandatory_gps_checks(bool display_failure); |
||||
bool mandatory_deadline_checks(bool display_failure); |
||||
void set_pre_arm_check(bool b); |
||||
|
||||
private: |
||||
|
||||
// actually contains the pre-arm checks. This is wrapped so that
|
||||
// we can store away success/failure of the checks.
|
||||
bool run_pre_arm_checks(bool display_failure); |
||||
|
||||
}; |
||||
|
@ -1,291 +1,292 @@
@@ -1,291 +1,292 @@
|
||||
/*
|
||||
This program is free software: you can redistribute it and/or modify |
||||
it under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 3 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
This program is distributed in the hope that it will be useful, |
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
GNU General Public License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
|
||||
#include "AP_GPS.h" |
||||
#include "GPS_Backend.h" |
||||
#include <AP_Logger/AP_Logger.h> |
||||
|
||||
#define GPS_BACKEND_DEBUGGING 0 |
||||
|
||||
#if GPS_BACKEND_DEBUGGING |
||||
# define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0) |
||||
#else |
||||
# define Debug(fmt, args ...) |
||||
#endif |
||||
|
||||
#include <GCS_MAVLink/GCS.h> |
||||
|
||||
extern const AP_HAL::HAL& hal; |
||||
|
||||
AP_GPS_Backend::AP_GPS_Backend(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : |
||||
port(_port), |
||||
gps(_gps), |
||||
state(_state) |
||||
{ |
||||
state.have_speed_accuracy = false; |
||||
state.have_horizontal_accuracy = false; |
||||
state.have_vertical_accuracy = false; |
||||
} |
||||
|
||||
int32_t AP_GPS_Backend::swap_int32(int32_t v) const |
||||
{ |
||||
const uint8_t *b = (const uint8_t *)&v; |
||||
union { |
||||
int32_t v; |
||||
uint8_t b[4]; |
||||
} u; |
||||
|
||||
u.b[0] = b[3]; |
||||
u.b[1] = b[2]; |
||||
u.b[2] = b[1]; |
||||
u.b[3] = b[0]; |
||||
|
||||
return u.v; |
||||
} |
||||
|
||||
int16_t AP_GPS_Backend::swap_int16(int16_t v) const |
||||
{ |
||||
const uint8_t *b = (const uint8_t *)&v; |
||||
union { |
||||
int16_t v; |
||||
uint8_t b[2]; |
||||
} u; |
||||
|
||||
u.b[0] = b[1]; |
||||
u.b[1] = b[0]; |
||||
|
||||
return u.v; |
||||
} |
||||
|
||||
|
||||
/**
|
||||
fill in time_week_ms and time_week from BCD date and time components |
||||
assumes MTK19 millisecond form of bcd_time |
||||
*/ |
||||
void AP_GPS_Backend::make_gps_time(uint32_t bcd_date, uint32_t bcd_milliseconds) |
||||
{ |
||||
uint8_t year, mon, day, hour, min, sec; |
||||
uint16_t msec; |
||||
|
||||
year = bcd_date % 100; |
||||
mon = (bcd_date / 100) % 100; |
||||
day = bcd_date / 10000; |
||||
|
||||
uint32_t v = bcd_milliseconds; |
||||
msec = v % 1000; v /= 1000; |
||||
sec = v % 100; v /= 100; |
||||
min = v % 100; v /= 100; |
||||
hour = v % 100; |
||||
|
||||
int8_t rmon = mon - 2; |
||||
if (0 >= rmon) {
|
||||
rmon += 12; |
||||
year -= 1; |
||||
} |
||||
|
||||
// get time in seconds since unix epoch
|
||||
uint32_t ret = (year/4) - (GPS_LEAPSECONDS_MILLIS / 1000UL) + 367*rmon/12 + day; |
||||
ret += year*365 + 10501; |
||||
ret = ret*24 + hour; |
||||
ret = ret*60 + min; |
||||
ret = ret*60 + sec; |
||||
|
||||
// convert to time since GPS epoch
|
||||
ret -= 272764785UL; |
||||
|
||||
// get GPS week and time
|
||||
state.time_week = ret / AP_SEC_PER_WEEK; |
||||
state.time_week_ms = (ret % AP_SEC_PER_WEEK) * AP_MSEC_PER_SEC; |
||||
state.time_week_ms += msec; |
||||
} |
||||
|
||||
/*
|
||||
fill in 3D velocity for a GPS that doesn't give vertical velocity numbers |
||||
*/ |
||||
void AP_GPS_Backend::fill_3d_velocity(void) |
||||
{ |
||||
float gps_heading = radians(state.ground_course); |
||||
|
||||
state.velocity.x = state.ground_speed * cosf(gps_heading); |
||||
state.velocity.y = state.ground_speed * sinf(gps_heading); |
||||
state.velocity.z = 0; |
||||
state.have_vertical_velocity = false; |
||||
} |
||||
|
||||
void |
||||
AP_GPS_Backend::inject_data(const uint8_t *data, uint16_t len) |
||||
{ |
||||
// not all backends have valid ports
|
||||
if (port != nullptr) { |
||||
if (port->txspace() > len) { |
||||
port->write(data, len); |
||||
} else { |
||||
Debug("GPS %d: Not enough TXSPACE", state.instance + 1); |
||||
} |
||||
} |
||||
} |
||||
|
||||
void AP_GPS_Backend::_detection_message(char *buffer, const uint8_t buflen) const |
||||
{ |
||||
const uint8_t instance = state.instance; |
||||
const struct AP_GPS::detect_state dstate = gps.detect_state[instance]; |
||||
|
||||
if (dstate.auto_detected_baud) { |
||||
hal.util->snprintf(buffer, buflen, |
||||
"GPS %d: detected as %s at %d baud", |
||||
instance + 1, |
||||
name(), |
||||
gps._baudrates[dstate.current_baud]); |
||||
} else { |
||||
hal.util->snprintf(buffer, buflen, |
||||
"GPS %d: specified as %s", |
||||
instance + 1, |
||||
name()); |
||||
} |
||||
} |
||||
|
||||
|
||||
void AP_GPS_Backend::broadcast_gps_type() const |
||||
{ |
||||
#ifndef HAL_NO_GCS |
||||
char buffer[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1]; |
||||
_detection_message(buffer, sizeof(buffer)); |
||||
gcs().send_text(MAV_SEVERITY_INFO, "%s", buffer); |
||||
#endif |
||||
} |
||||
|
||||
void AP_GPS_Backend::Write_AP_Logger_Log_Startup_messages() const |
||||
{ |
||||
#ifndef HAL_NO_LOGGING |
||||
char buffer[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1]; |
||||
_detection_message(buffer, sizeof(buffer)); |
||||
AP::logger().Write_Message(buffer); |
||||
#endif |
||||
} |
||||
|
||||
bool AP_GPS_Backend::should_log() const |
||||
{ |
||||
return gps.should_log(); |
||||
} |
||||
|
||||
|
||||
void AP_GPS_Backend::send_mavlink_gps_rtk(mavlink_channel_t chan) |
||||
{ |
||||
#ifndef HAL_NO_GCS |
||||
const uint8_t instance = state.instance; |
||||
// send status
|
||||
switch (instance) { |
||||
case 0: |
||||
mavlink_msg_gps_rtk_send(chan, |
||||
0, // Not implemented yet
|
||||
0, // Not implemented yet
|
||||
state.rtk_week_number, |
||||
state.rtk_time_week_ms, |
||||
0, // Not implemented yet
|
||||
0, // Not implemented yet
|
||||
state.rtk_num_sats, |
||||
state.rtk_baseline_coords_type, |
||||
state.rtk_baseline_x_mm, |
||||
state.rtk_baseline_y_mm, |
||||
state.rtk_baseline_z_mm, |
||||
state.rtk_accuracy, |
||||
state.rtk_iar_num_hypotheses); |
||||
break; |
||||
case 1: |
||||
mavlink_msg_gps2_rtk_send(chan, |
||||
0, // Not implemented yet
|
||||
0, // Not implemented yet
|
||||
state.rtk_week_number, |
||||
state.rtk_time_week_ms, |
||||
0, // Not implemented yet
|
||||
0, // Not implemented yet
|
||||
state.rtk_num_sats, |
||||
state.rtk_baseline_coords_type, |
||||
state.rtk_baseline_x_mm, |
||||
state.rtk_baseline_y_mm, |
||||
state.rtk_baseline_z_mm, |
||||
state.rtk_accuracy, |
||||
state.rtk_iar_num_hypotheses); |
||||
break; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
|
||||
/*
|
||||
set a timestamp based on arrival time on uart at current byte, |
||||
assuming the message started nbytes ago |
||||
*/ |
||||
void AP_GPS_Backend::set_uart_timestamp(uint16_t nbytes) |
||||
{ |
||||
if (port) { |
||||
state.uart_timestamp_ms = port->receive_time_constraint_us(nbytes) / 1000U; |
||||
} |
||||
} |
||||
|
||||
|
||||
void AP_GPS_Backend::check_new_itow(uint32_t itow, uint32_t msg_length) |
||||
{ |
||||
if (itow != _last_itow) { |
||||
_last_itow = itow; |
||||
|
||||
/*
|
||||
we need to calculate a pseudo-itow, which copes with the |
||||
iTow from the GPS changing in unexpected ways. We assume |
||||
that timestamps from the GPS are always in multiples of |
||||
50ms. That means we can't handle a GPS with an update rate |
||||
of more than 20Hz. We could do more, but we'd need the GPS |
||||
poll time to be higher |
||||
*/ |
||||
const uint32_t gps_min_period_ms = 50; |
||||
|
||||
// get the time the packet arrived on the UART
|
||||
uint64_t uart_us = port->receive_time_constraint_us(msg_length); |
||||
|
||||
uint32_t now = AP_HAL::millis(); |
||||
uint32_t dt_ms = now - _last_ms; |
||||
_last_ms = now; |
||||
|
||||
// round to nearest 50ms period
|
||||
dt_ms = ((dt_ms + (gps_min_period_ms/2)) / gps_min_period_ms) * gps_min_period_ms; |
||||
|
||||
// work out an actual message rate. If we get 5 messages in a
|
||||
// row with a new rate we switch rate
|
||||
if (_last_rate_ms == dt_ms) { |
||||
if (_rate_counter < 5) { |
||||
_rate_counter++; |
||||
} else if (_rate_ms != dt_ms) { |
||||
_rate_ms = dt_ms; |
||||
} |
||||
} else { |
||||
_rate_counter = 0; |
||||
_last_rate_ms = dt_ms; |
||||
} |
||||
if (_rate_ms == 0) { |
||||
// only allow 5Hz to 20Hz in user config
|
||||
_rate_ms = constrain_int16(gps.get_rate_ms(state.instance), 50, 200); |
||||
} |
||||
|
||||
// round to calculated message rate
|
||||
dt_ms = ((dt_ms + (_rate_ms/2)) / _rate_ms) * _rate_ms; |
||||
|
||||
// calculate pseudo-itow
|
||||
_pseudo_itow += dt_ms * 1000U; |
||||
|
||||
// use msg arrival time, and correct for jitter
|
||||
uint64_t local_us = jitter_correction.correct_offboard_timestamp_usec(_pseudo_itow, uart_us); |
||||
state.uart_timestamp_ms = local_us / 1000U; |
||||
} |
||||
} |
||||
/*
|
||||
This program is free software: you can redistribute it and/or modify |
||||
it under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 3 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
This program is distributed in the hope that it will be useful, |
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
GNU General Public License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
|
||||
#include "AP_GPS.h" |
||||
#include "GPS_Backend.h" |
||||
#include <AP_Logger/AP_Logger.h> |
||||
|
||||
#define GPS_BACKEND_DEBUGGING 0 |
||||
|
||||
#if GPS_BACKEND_DEBUGGING |
||||
# define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0) |
||||
#else |
||||
# define Debug(fmt, args ...) |
||||
#endif |
||||
|
||||
#include <GCS_MAVLink/GCS.h> |
||||
|
||||
extern const AP_HAL::HAL& hal; |
||||
|
||||
AP_GPS_Backend::AP_GPS_Backend(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : |
||||
port(_port), |
||||
gps(_gps), |
||||
state(_state) |
||||
{ |
||||
state.have_speed_accuracy = false; |
||||
state.have_horizontal_accuracy = false; |
||||
state.have_vertical_accuracy = false; |
||||
} |
||||
|
||||
int32_t AP_GPS_Backend::swap_int32(int32_t v) const |
||||
{ |
||||
const uint8_t *b = (const uint8_t *)&v; |
||||
union { |
||||
int32_t v; |
||||
uint8_t b[4]; |
||||
} u; |
||||
|
||||
u.b[0] = b[3]; |
||||
u.b[1] = b[2]; |
||||
u.b[2] = b[1]; |
||||
u.b[3] = b[0]; |
||||
|
||||
return u.v; |
||||
} |
||||
|
||||
int16_t AP_GPS_Backend::swap_int16(int16_t v) const |
||||
{ |
||||
const uint8_t *b = (const uint8_t *)&v; |
||||
union { |
||||
int16_t v; |
||||
uint8_t b[2]; |
||||
} u; |
||||
|
||||
u.b[0] = b[1]; |
||||
u.b[1] = b[0]; |
||||
|
||||
return u.v; |
||||
} |
||||
|
||||
|
||||
/**
|
||||
fill in time_week_ms and time_week from BCD date and time components |
||||
assumes MTK19 millisecond form of bcd_time |
||||
*/ |
||||
void AP_GPS_Backend::make_gps_time(uint32_t bcd_date, uint32_t bcd_milliseconds) |
||||
{ |
||||
uint8_t year, mon, day, hour, min, sec; |
||||
uint16_t msec; |
||||
|
||||
year = bcd_date % 100; |
||||
mon = (bcd_date / 100) % 100; |
||||
day = bcd_date / 10000; |
||||
|
||||
uint32_t v = bcd_milliseconds; |
||||
msec = v % 1000; v /= 1000; |
||||
sec = v % 100; v /= 100; |
||||
min = v % 100; v /= 100; |
||||
hour = v % 100; |
||||
|
||||
int8_t rmon = mon - 2; |
||||
if (0 >= rmon) {
|
||||
rmon += 12; |
||||
year -= 1; |
||||
} |
||||
state.zr_date_timestamp =(year+2000)*10000+mon*100+day; //FIXME only calcute onecs
|
||||
|
||||
// get time in seconds since unix epoch
|
||||
uint32_t ret = (year/4) - (GPS_LEAPSECONDS_MILLIS / 1000UL) + 367*rmon/12 + day; |
||||
ret += year*365 + 10501; |
||||
ret = ret*24 + hour; |
||||
ret = ret*60 + min; |
||||
ret = ret*60 + sec; |
||||
|
||||
// convert to time since GPS epoch
|
||||
ret -= 272764785UL; |
||||
|
||||
// get GPS week and time
|
||||
state.time_week = ret / AP_SEC_PER_WEEK; |
||||
state.time_week_ms = (ret % AP_SEC_PER_WEEK) * AP_MSEC_PER_SEC; |
||||
state.time_week_ms += msec; |
||||
} |
||||
|
||||
/*
|
||||
fill in 3D velocity for a GPS that doesn't give vertical velocity numbers |
||||
*/ |
||||
void AP_GPS_Backend::fill_3d_velocity(void) |
||||
{ |
||||
float gps_heading = radians(state.ground_course); |
||||
|
||||
state.velocity.x = state.ground_speed * cosf(gps_heading); |
||||
state.velocity.y = state.ground_speed * sinf(gps_heading); |
||||
state.velocity.z = 0; |
||||
state.have_vertical_velocity = false; |
||||
} |
||||
|
||||
void |
||||
AP_GPS_Backend::inject_data(const uint8_t *data, uint16_t len) |
||||
{ |
||||
// not all backends have valid ports
|
||||
if (port != nullptr) { |
||||
if (port->txspace() > len) { |
||||
port->write(data, len); |
||||
} else { |
||||
Debug("GPS %d: Not enough TXSPACE", state.instance + 1); |
||||
} |
||||
} |
||||
} |
||||
|
||||
void AP_GPS_Backend::_detection_message(char *buffer, const uint8_t buflen) const |
||||
{ |
||||
const uint8_t instance = state.instance; |
||||
const struct AP_GPS::detect_state dstate = gps.detect_state[instance]; |
||||
|
||||
if (dstate.auto_detected_baud) { |
||||
hal.util->snprintf(buffer, buflen, |
||||
"GPS %d: detected as %s at %d baud", |
||||
instance + 1, |
||||
name(), |
||||
gps._baudrates[dstate.current_baud]); |
||||
} else { |
||||
hal.util->snprintf(buffer, buflen, |
||||
"GPS %d: specified as %s", |
||||
instance + 1, |
||||
name()); |
||||
} |
||||
} |
||||
|
||||
|
||||
void AP_GPS_Backend::broadcast_gps_type() const |
||||
{ |
||||
#ifndef HAL_NO_GCS |
||||
char buffer[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1]; |
||||
_detection_message(buffer, sizeof(buffer)); |
||||
gcs().send_text(MAV_SEVERITY_INFO, "%s", buffer); |
||||
#endif |
||||
} |
||||
|
||||
void AP_GPS_Backend::Write_AP_Logger_Log_Startup_messages() const |
||||
{ |
||||
#ifndef HAL_NO_LOGGING |
||||
char buffer[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1]; |
||||
_detection_message(buffer, sizeof(buffer)); |
||||
AP::logger().Write_Message(buffer); |
||||
#endif |
||||
} |
||||
|
||||
bool AP_GPS_Backend::should_log() const |
||||
{ |
||||
return gps.should_log(); |
||||
} |
||||
|
||||
|
||||
void AP_GPS_Backend::send_mavlink_gps_rtk(mavlink_channel_t chan) |
||||
{ |
||||
#ifndef HAL_NO_GCS |
||||
const uint8_t instance = state.instance; |
||||
// send status
|
||||
switch (instance) { |
||||
case 0: |
||||
mavlink_msg_gps_rtk_send(chan, |
||||
0, // Not implemented yet
|
||||
0, // Not implemented yet
|
||||
state.rtk_week_number, |
||||
state.rtk_time_week_ms, |
||||
0, // Not implemented yet
|
||||
0, // Not implemented yet
|
||||
state.rtk_num_sats, |
||||
state.rtk_baseline_coords_type, |
||||
state.rtk_baseline_x_mm, |
||||
state.rtk_baseline_y_mm, |
||||
state.rtk_baseline_z_mm, |
||||
state.rtk_accuracy, |
||||
state.rtk_iar_num_hypotheses); |
||||
break; |
||||
case 1: |
||||
mavlink_msg_gps2_rtk_send(chan, |
||||
0, // Not implemented yet
|
||||
0, // Not implemented yet
|
||||
state.rtk_week_number, |
||||
state.rtk_time_week_ms, |
||||
0, // Not implemented yet
|
||||
0, // Not implemented yet
|
||||
state.rtk_num_sats, |
||||
state.rtk_baseline_coords_type, |
||||
state.rtk_baseline_x_mm, |
||||
state.rtk_baseline_y_mm, |
||||
state.rtk_baseline_z_mm, |
||||
state.rtk_accuracy, |
||||
state.rtk_iar_num_hypotheses); |
||||
break; |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
|
||||
/*
|
||||
set a timestamp based on arrival time on uart at current byte, |
||||
assuming the message started nbytes ago |
||||
*/ |
||||
void AP_GPS_Backend::set_uart_timestamp(uint16_t nbytes) |
||||
{ |
||||
if (port) { |
||||
state.uart_timestamp_ms = port->receive_time_constraint_us(nbytes) / 1000U; |
||||
} |
||||
} |
||||
|
||||
|
||||
void AP_GPS_Backend::check_new_itow(uint32_t itow, uint32_t msg_length) |
||||
{ |
||||
if (itow != _last_itow) { |
||||
_last_itow = itow; |
||||
|
||||
/*
|
||||
we need to calculate a pseudo-itow, which copes with the |
||||
iTow from the GPS changing in unexpected ways. We assume |
||||
that timestamps from the GPS are always in multiples of |
||||
50ms. That means we can't handle a GPS with an update rate |
||||
of more than 20Hz. We could do more, but we'd need the GPS |
||||
poll time to be higher |
||||
*/ |
||||
const uint32_t gps_min_period_ms = 50; |
||||
|
||||
// get the time the packet arrived on the UART
|
||||
uint64_t uart_us = port->receive_time_constraint_us(msg_length); |
||||
|
||||
uint32_t now = AP_HAL::millis(); |
||||
uint32_t dt_ms = now - _last_ms; |
||||
_last_ms = now; |
||||
|
||||
// round to nearest 50ms period
|
||||
dt_ms = ((dt_ms + (gps_min_period_ms/2)) / gps_min_period_ms) * gps_min_period_ms; |
||||
|
||||
// work out an actual message rate. If we get 5 messages in a
|
||||
// row with a new rate we switch rate
|
||||
if (_last_rate_ms == dt_ms) { |
||||
if (_rate_counter < 5) { |
||||
_rate_counter++; |
||||
} else if (_rate_ms != dt_ms) { |
||||
_rate_ms = dt_ms; |
||||
} |
||||
} else { |
||||
_rate_counter = 0; |
||||
_last_rate_ms = dt_ms; |
||||
} |
||||
if (_rate_ms == 0) { |
||||
// only allow 5Hz to 20Hz in user config
|
||||
_rate_ms = constrain_int16(gps.get_rate_ms(state.instance), 50, 200); |
||||
} |
||||
|
||||
// round to calculated message rate
|
||||
dt_ms = ((dt_ms + (_rate_ms/2)) / _rate_ms) * _rate_ms; |
||||
|
||||
// calculate pseudo-itow
|
||||
_pseudo_itow += dt_ms * 1000U; |
||||
|
||||
// use msg arrival time, and correct for jitter
|
||||
uint64_t local_us = jitter_correction.correct_offboard_timestamp_usec(_pseudo_itow, uart_us); |
||||
state.uart_timestamp_ms = local_us / 1000U; |
||||
} |
||||
} |
||||
|
Loading…
Reference in new issue