4 changed files with 298 additions and 0 deletions
@ -0,0 +1,199 @@ |
|||||||
|
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||||
|
/*
|
||||||
|
This program is free software: you can redistribute it and/or modify |
||||||
|
it under the terms of the GNU General Public License as published by |
||||||
|
the Free Software Foundation, either version 3 of the License, or |
||||||
|
(at your option) any later version. |
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful, |
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||||
|
GNU General Public License for more details. |
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License |
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*/ |
||||||
|
|
||||||
|
/*
|
||||||
|
* AP_OpticalFlow_Linux.cpp - ardupilot library for the PX4Flow sensor. |
||||||
|
* inspired by the PX4Firmware code. |
||||||
|
*
|
||||||
|
* @author: Víctor Mayoral Vilches |
||||||
|
* |
||||||
|
*/ |
||||||
|
|
||||||
|
#include <AP_HAL.h> |
||||||
|
#include "OpticalFlow.h" |
||||||
|
|
||||||
|
#define DEBUG 1 |
||||||
|
#define RAW_READ 0 |
||||||
|
|
||||||
|
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX |
||||||
|
extern const AP_HAL::HAL& hal; |
||||||
|
|
||||||
|
AP_OpticalFlow_Linux::AP_OpticalFlow_Linux(OpticalFlow &_frontend) :
|
||||||
|
OpticalFlow_backend(_frontend) |
||||||
|
{} |
||||||
|
|
||||||
|
|
||||||
|
void AP_OpticalFlow_Linux::init(void) |
||||||
|
{ |
||||||
|
uint8_t buff[22]; |
||||||
|
|
||||||
|
// get pointer to i2c bus semaphore
|
||||||
|
AP_HAL::Semaphore *i2c_sem = hal.i2c->get_semaphore(); |
||||||
|
|
||||||
|
// take i2c bus sempahore
|
||||||
|
if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { |
||||||
|
hal.scheduler->panic(PSTR("PX4FLOW: unable to get semaphore")); |
||||||
|
} |
||||||
|
|
||||||
|
// to be sure this is not a ll40ls Lidar (which can also be on
|
||||||
|
// 0x42) we check if a I2C_FRAME_SIZE byte transfer works from address
|
||||||
|
// 0. The ll40ls gives an error for that, whereas the flow
|
||||||
|
// happily returns some data
|
||||||
|
uint8_t val[I2C_FRAME_SIZE]; |
||||||
|
if (hal.i2c->readRegisters(I2C_FLOW_ADDRESS, 0, I2C_FRAME_SIZE, val)) |
||||||
|
hal.scheduler->panic(PSTR("ll40ls Lidar")); |
||||||
|
|
||||||
|
i2c_sem->give(); |
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
int AP_OpticalFlow_Linux::read(optical_flow_s* report) |
||||||
|
{ |
||||||
|
// get pointer to i2c bus semaphore
|
||||||
|
AP_HAL::Semaphore *i2c_sem = hal.i2c->get_semaphore(); |
||||||
|
|
||||||
|
// take i2c bus sempahore
|
||||||
|
if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { |
||||||
|
hal.scheduler->panic(PSTR("PX4FLOW: unable to get semaphore")); |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
uint8_t val[I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE] = { 0 }; |
||||||
|
|
||||||
|
#if RAW_READ |
||||||
|
hal.console->printf_P(PSTR("PX4FLOW: RAW_READ")); |
||||||
|
// Send the command to begin a measurement
|
||||||
|
uint8_t cmd = PX4FLOW_REG; |
||||||
|
if (hal.i2c->write(I2C_FLOW_ADDRESS, 1, &cmd)){
|
||||||
|
hal.console->printf_P(PSTR("PX4FLOW: Error while beginning a measurement")); |
||||||
|
i2c_sem->give(); |
||||||
|
return 0; |
||||||
|
} |
||||||
|
|
||||||
|
// Perform the reading
|
||||||
|
if (PX4FLOW_REG == 0x00) { |
||||||
|
if (hal.i2c->read(I2C_FLOW_ADDRESS, I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE, val)){ |
||||||
|
hal.console->printf_P(PSTR("PX4FLOW: Error while reading")); |
||||||
|
i2c_sem->give(); |
||||||
|
return 0; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
if (PX4FLOW_REG == 0x16) { |
||||||
|
if (hal.i2c->read(I2C_FLOW_ADDRESS, I2C_INTEGRAL_FRAME_SIZE, val)){ |
||||||
|
hal.console->printf_P(PSTR("PX4FLOW: Error while reading")); |
||||||
|
i2c_sem->give(); |
||||||
|
return 0; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
#else |
||||||
|
// Perform the writing and reading in a single command
|
||||||
|
if (PX4FLOW_REG == 0x00) { |
||||||
|
if (hal.i2c->readRegisters(I2C_FLOW_ADDRESS, PX4FLOW_REG, I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE, val)){ |
||||||
|
hal.console->printf_P(PSTR("PX4FLOW: Error while reading")); |
||||||
|
i2c_sem->give(); |
||||||
|
return 0; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
if (PX4FLOW_REG == 0x16) { |
||||||
|
if (hal.i2c->readRegisters(I2C_FLOW_ADDRESS, PX4FLOW_REG, I2C_INTEGRAL_FRAME_SIZE, val)){ |
||||||
|
hal.console->printf_P(PSTR("PX4FLOW: Error while reading")); |
||||||
|
i2c_sem->give(); |
||||||
|
return 0; |
||||||
|
} |
||||||
|
} |
||||||
|
#endif |
||||||
|
|
||||||
|
|
||||||
|
if (PX4FLOW_REG == 0) { |
||||||
|
memcpy(&f, val, I2C_FRAME_SIZE); |
||||||
|
memcpy(&f_integral, &(val[I2C_FRAME_SIZE]), I2C_INTEGRAL_FRAME_SIZE); |
||||||
|
} |
||||||
|
|
||||||
|
if (PX4FLOW_REG == 0x16) { |
||||||
|
memcpy(&f_integral, val, I2C_INTEGRAL_FRAME_SIZE); |
||||||
|
} |
||||||
|
|
||||||
|
// report->timestamp = hrt_absolute_time();
|
||||||
|
report->pixel_flow_x_integral = static_cast<float>(f_integral.pixel_flow_x_integral) / 10000.0f;//convert to radians
|
||||||
|
report->pixel_flow_y_integral = static_cast<float>(f_integral.pixel_flow_y_integral) / 10000.0f;//convert to radians
|
||||||
|
report->frame_count_since_last_readout = f_integral.frame_count_since_last_readout; |
||||||
|
report->ground_distance_m = static_cast<float>(f_integral.ground_distance) / 1000.0f;//convert to meters
|
||||||
|
report->quality = f_integral.qual; //0:bad ; 255 max quality
|
||||||
|
report->gyro_x_rate_integral = static_cast<float>(f_integral.gyro_x_rate_integral) / 10000.0f; //convert to radians
|
||||||
|
report->gyro_y_rate_integral = static_cast<float>(f_integral.gyro_y_rate_integral) / 10000.0f; //convert to radians
|
||||||
|
report->gyro_z_rate_integral = static_cast<float>(f_integral.gyro_z_rate_integral) / 10000.0f; //convert to radians
|
||||||
|
report->integration_timespan = f_integral.integration_timespan; //microseconds
|
||||||
|
report->time_since_last_sonar_update = f_integral.sonar_timestamp;//microseconds
|
||||||
|
report->gyro_temperature = f_integral.gyro_temperature;//Temperature * 100 in centi-degrees Celsius
|
||||||
|
|
||||||
|
report->sensor_id = 0; |
||||||
|
|
||||||
|
hal.console->printf_P(PSTR("PX4FLOW measurement: ground_distance_m: %f\n"), report->ground_distance_m); |
||||||
|
|
||||||
|
/*
|
||||||
|
// rotate measurements according to parameter
|
||||||
|
float zeroval = 0.0f; |
||||||
|
rotate_3f(_sensor_rotation, report.pixel_flow_x_integral, report.pixel_flow_y_integral, zeroval);
|
||||||
|
*/ |
||||||
|
|
||||||
|
i2c_sem->give(); |
||||||
|
return 1; |
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
// update - read latest values from sensor and fill in x,y and totals.
|
||||||
|
void AP_OpticalFlow_Linux::update(void) |
||||||
|
{ |
||||||
|
struct optical_flow_s report; |
||||||
|
|
||||||
|
// read the report from the sensor
|
||||||
|
read(&report); |
||||||
|
|
||||||
|
// process
|
||||||
|
struct OpticalFlow::OpticalFlow_state state; |
||||||
|
state.device_id = report.sensor_id; |
||||||
|
state.surface_quality = report.quality; |
||||||
|
if (report.integration_timespan > 0) { |
||||||
|
const Vector2f flowScaler = _flowScaler(); |
||||||
|
float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x; |
||||||
|
float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y; |
||||||
|
float integralToRate = 1e6f / float(report.integration_timespan); |
||||||
|
state.flowRate.x = flowScaleFactorX * integralToRate * float(report.pixel_flow_x_integral); // rad/sec measured optically about the X sensor axis
|
||||||
|
state.flowRate.y = flowScaleFactorY * integralToRate * float(report.pixel_flow_y_integral); // rad/sec measured optically about the Y sensor axis
|
||||||
|
state.bodyRate.x = integralToRate * float(report.gyro_x_rate_integral); // rad/sec measured inertially about the X sensor axis
|
||||||
|
state.bodyRate.y = integralToRate * float(report.gyro_y_rate_integral); // rad/sec measured inertially about the Y sensor axis
|
||||||
|
} else { |
||||||
|
state.flowRate.zero(); |
||||||
|
state.bodyRate.zero(); |
||||||
|
} |
||||||
|
|
||||||
|
#if DEBUG |
||||||
|
hal.console->printf_P(PSTR("PX4FLOW print: sensor_id: %d\n"), state.device_id); |
||||||
|
hal.console->printf_P(PSTR("PX4FLOW print: surface_quality: %d\n"), state.surface_quality); |
||||||
|
hal.console->printf_P(PSTR("PX4FLOW print: flowRate.x: %d\n"), state.flowRate.x); |
||||||
|
hal.console->printf_P(PSTR("PX4FLOW print: flowRate.y: %d\n"), state.flowRate.y); |
||||||
|
hal.console->printf_P(PSTR("PX4FLOW print: bodyRate.x: %d\n"), state.bodyRate.x); |
||||||
|
hal.console->printf_P(PSTR("PX4FLOW print: bodyRate.y: %d\n"), state.bodyRate.y); |
||||||
|
#endif |
||||||
|
_update_frontend(state); |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#endif // CONFIG_HAL_BOARD == HAL_BOARD_LINUX
|
@ -0,0 +1,96 @@ |
|||||||
|
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||||
|
|
||||||
|
#ifndef AP_OpticalFlow_Linux_H |
||||||
|
#define AP_OpticalFlow_Linux_H |
||||||
|
|
||||||
|
#include "OpticalFlow.h" |
||||||
|
|
||||||
|
#include <AP_Math.h> |
||||||
|
|
||||||
|
/* Configuration Constants */ |
||||||
|
#define I2C_FLOW_ADDRESS 0x42 ///< 7-bit address. 8-bit address is 0x84, range 0x42 - 0x49
|
||||||
|
|
||||||
|
/* PX4FLOW Registers addresses */ |
||||||
|
#define PX4FLOW_REG 0x16 ///< Measure Register 22
|
||||||
|
|
||||||
|
#define PX4FLOW_CONVERSION_INTERVAL 100000 ///< in microseconds! 20000 = 50 Hz 100000 = 10Hz
|
||||||
|
#define PX4FLOW_I2C_MAX_BUS_SPEED 400000 ///< 400 KHz maximum speed
|
||||||
|
|
||||||
|
typedef struct i2c_frame |
||||||
|
{ |
||||||
|
uint16_t frame_count; |
||||||
|
int16_t pixel_flow_x_sum; |
||||||
|
int16_t pixel_flow_y_sum; |
||||||
|
int16_t flow_comp_m_x; |
||||||
|
int16_t flow_comp_m_y; |
||||||
|
int16_t qual; |
||||||
|
int16_t gyro_x_rate; |
||||||
|
int16_t gyro_y_rate; |
||||||
|
int16_t gyro_z_rate; |
||||||
|
uint8_t gyro_range; |
||||||
|
uint8_t sonar_timestamp; |
||||||
|
int16_t ground_distance; |
||||||
|
} i2c_frame; |
||||||
|
|
||||||
|
#define I2C_FRAME_SIZE (sizeof(i2c_frame)) |
||||||
|
|
||||||
|
|
||||||
|
typedef struct i2c_integral_frame |
||||||
|
{ |
||||||
|
uint16_t frame_count_since_last_readout; |
||||||
|
int16_t pixel_flow_x_integral; |
||||||
|
int16_t pixel_flow_y_integral; |
||||||
|
int16_t gyro_x_rate_integral; |
||||||
|
int16_t gyro_y_rate_integral; |
||||||
|
int16_t gyro_z_rate_integral; |
||||||
|
uint32_t integration_timespan; |
||||||
|
uint32_t sonar_timestamp; |
||||||
|
uint16_t ground_distance; |
||||||
|
int16_t gyro_temperature; |
||||||
|
uint8_t qual; |
||||||
|
} i2c_integral_frame; |
||||||
|
|
||||||
|
#define I2C_INTEGRAL_FRAME_SIZE (sizeof(i2c_integral_frame)) |
||||||
|
|
||||||
|
/**
|
||||||
|
* Optical flow in NED body frame in SI units. |
||||||
|
* |
||||||
|
* @see http://en.wikipedia.org/wiki/International_System_of_Units
|
||||||
|
*/ |
||||||
|
struct optical_flow_s { |
||||||
|
|
||||||
|
uint64_t timestamp; /**< in microseconds since system start */ |
||||||
|
uint8_t sensor_id; /**< id of the sensor emitting the flow value */ |
||||||
|
float pixel_flow_x_integral; /**< accumulated optical flow in radians around x axis */ |
||||||
|
float pixel_flow_y_integral; /**< accumulated optical flow in radians around y axis */ |
||||||
|
float gyro_x_rate_integral; /**< accumulated gyro value in radians around x axis */ |
||||||
|
float gyro_y_rate_integral; /**< accumulated gyro value in radians around y axis */ |
||||||
|
float gyro_z_rate_integral; /**< accumulated gyro value in radians around z axis */ |
||||||
|
float ground_distance_m; /**< Altitude / distance to ground in meters */ |
||||||
|
uint32_t integration_timespan; /**<accumulation timespan in microseconds */ |
||||||
|
uint32_t time_since_last_sonar_update;/**< time since last sonar update in microseconds */ |
||||||
|
uint16_t frame_count_since_last_readout;/**< number of accumulated frames in timespan */ |
||||||
|
int16_t gyro_temperature;/**< Temperature * 100 in centi-degrees Celsius */ |
||||||
|
uint8_t quality; /**< Average of quality of accumulated frames, 0: bad quality, 255: maximum quality */ |
||||||
|
}; |
||||||
|
|
||||||
|
class AP_OpticalFlow_Linux : public OpticalFlow_backend |
||||||
|
{ |
||||||
|
public: |
||||||
|
/// constructor
|
||||||
|
AP_OpticalFlow_Linux(OpticalFlow &_frontend); |
||||||
|
|
||||||
|
// init - initialise the sensor
|
||||||
|
void init(); |
||||||
|
|
||||||
|
// update - read latest values from sensor and fill in x,y and totals.
|
||||||
|
void update(void);
|
||||||
|
|
||||||
|
private: |
||||||
|
int read(optical_flow_s* report); |
||||||
|
void print(optical_flow_s* report);
|
||||||
|
struct i2c_frame f; |
||||||
|
struct i2c_integral_frame f_integral;
|
||||||
|
}; |
||||||
|
|
||||||
|
#endif |
Loading…
Reference in new issue