|
|
|
@ -46,7 +46,9 @@
@@ -46,7 +46,9 @@
|
|
|
|
|
#define AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS 500 // restart tuning if pilot has left sticks in middle for 2 seconds |
|
|
|
|
#define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 500 // timeout for tuning mode's testing step |
|
|
|
|
#define AUTOTUNE_LEVEL_ANGLE_CD 300 // angle which qualifies as level |
|
|
|
|
#define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 250 // time we require the copter to be level |
|
|
|
|
#define AUTOTUNE_LEVEL_RATE_RP_CD 1000 // rate which qualifies as level for roll and pitch |
|
|
|
|
#define AUTOTUNE_LEVEL_RATE_Y_CD 750 // rate which qualifies as level for yaw |
|
|
|
|
#define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 500 // time we require the copter to be level |
|
|
|
|
#define AUTOTUNE_RD_STEP 0.05f // minimum increment when increasing/decreasing Rate D term |
|
|
|
|
#define AUTOTUNE_RP_STEP 0.05f // minimum increment when increasing/decreasing Rate P term |
|
|
|
|
#define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term |
|
|
|
@ -57,16 +59,16 @@
@@ -57,16 +59,16 @@
|
|
|
|
|
#define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing |
|
|
|
|
#define AUTOTUNE_PI_RATIO_FINAL 2.5f // I is set 1x P after testing |
|
|
|
|
#define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing |
|
|
|
|
#define AUTOTUNE_RD_MIN 0.002f // minimum Rate D value |
|
|
|
|
#define AUTOTUNE_RD_MIN 0.004f // minimum Rate D value |
|
|
|
|
#define AUTOTUNE_RD_MAX 0.050f // maximum Rate D value |
|
|
|
|
#define AUTOTUNE_RLPF_MIN 1.0f // minimum Rate Yaw filter value |
|
|
|
|
#define AUTOTUNE_RLPF_MAX 10.0f // maximum Rate Yaw filter value |
|
|
|
|
#define AUTOTUNE_RP_MIN 0.01f // minimum Rate P value |
|
|
|
|
#define AUTOTUNE_RP_MAX 5.0f // maximum Rate P value |
|
|
|
|
#define AUTOTUNE_RP_MAX 1.0f // maximum Rate P value |
|
|
|
|
#define AUTOTUNE_SP_MAX 20.0f // maximum Stab P value |
|
|
|
|
#define AUTOTUNE_SP_MIN 1.0f // maximum Stab P value |
|
|
|
|
#define AUTOTUNE_SP_MIN 0.5f // maximum Stab P value |
|
|
|
|
#define AUTOTUNE_ACCEL_RP_BACKOFF 1.0f // back off from maximum acceleration |
|
|
|
|
#define AUTOTUNE_ACCEL_Y_BACKOFF 0.75f // back off from maximum acceleration |
|
|
|
|
#define AUTOTUNE_ACCEL_Y_BACKOFF 0.75f // back off from maximum acceleration |
|
|
|
|
#define AUTOTUNE_RP_ACCEL_MIN 75000.0f // Minimum acceleration for Roll and Pitch |
|
|
|
|
#define AUTOTUNE_Y_ACCEL_MIN 18000.0f // Minimum acceleration for Roll and Pitch |
|
|
|
|
#define AUTOTUNE_SUCCESS_COUNT 4 // how many successful iterations we need to freeze at current gains |
|
|
|
@ -130,6 +132,7 @@ struct autotune_state_struct {
@@ -130,6 +132,7 @@ struct autotune_state_struct {
|
|
|
|
|
uint8_t positive_direction : 1; // 0 = tuning in negative direction (i.e. left for roll), 1 = positive direction (i.e. right for roll) |
|
|
|
|
AutoTuneStepType step : 2; // see AutoTuneStepType for what steps are performed |
|
|
|
|
AutoTuneTuneType tune_type : 3; // see AutoTuneTuneType |
|
|
|
|
uint8_t ignore_next : 1; // 1 = ignore the next test |
|
|
|
|
} autotune_state; |
|
|
|
|
|
|
|
|
|
// variables |
|
|
|
@ -141,8 +144,11 @@ static uint32_t autotune_step_stop_time; // start time of
@@ -141,8 +144,11 @@ static uint32_t autotune_step_stop_time; // start time of
|
|
|
|
|
static int8_t autotune_counter; // counter for tuning gains |
|
|
|
|
static float autotune_target_rate, autotune_start_rate; // target and start rate |
|
|
|
|
static float autotune_target_angle, autotune_start_angle; // target and start angles |
|
|
|
|
static float autotune_desired_yaw; // yaw heading during tune |
|
|
|
|
static float rate_max, autotune_test_accel_max; // maximum acceleration variables |
|
|
|
|
|
|
|
|
|
LowPassFilterFloat rotation_rate_filt; // filtered rotation rate in radians/second |
|
|
|
|
|
|
|
|
|
// backup of currently being tuned parameter values |
|
|
|
|
static float orig_roll_rp = 0, orig_roll_ri, orig_roll_rd, orig_roll_sp; |
|
|
|
|
static float orig_pitch_rp = 0, orig_pitch_ri, orig_pitch_rd, orig_pitch_sp; |
|
|
|
@ -308,6 +314,7 @@ static void autotune_run()
@@ -308,6 +314,7 @@ static void autotune_run()
|
|
|
|
|
// set gains to their intra-test values (which are very close to the original gains) |
|
|
|
|
// autotune_load_intra_test_gains(); //I think we should be keeping the originals here to let the I term settle quickly |
|
|
|
|
autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL; // set tuning step back from beginning |
|
|
|
|
autotune_desired_yaw = ahrs.yaw_sensor; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -341,15 +348,20 @@ static void autotune_attitude_control()
@@ -341,15 +348,20 @@ static void autotune_attitude_control()
|
|
|
|
|
attitude_control.limit_angle_to_rate_request(true); |
|
|
|
|
|
|
|
|
|
// hold level attitude |
|
|
|
|
attitude_control.angle_ef_roll_pitch_rate_ef_yaw( 0.0f, 0.0f, 0.0f); |
|
|
|
|
attitude_control.angle_ef_roll_pitch_yaw( 0.0f, 0.0f, autotune_desired_yaw, true); |
|
|
|
|
|
|
|
|
|
// hold the copter level for 0.25 seconds before we begin a twitch |
|
|
|
|
// hold the copter level for 0.5 seconds before we begin a twitch |
|
|
|
|
// reset counter if we are no longer level |
|
|
|
|
if ((labs(ahrs.roll_sensor) > AUTOTUNE_LEVEL_ANGLE_CD) || (labs(ahrs.pitch_sensor) > AUTOTUNE_LEVEL_ANGLE_CD)) { |
|
|
|
|
if ((labs(ahrs.roll_sensor) > AUTOTUNE_LEVEL_ANGLE_CD) || |
|
|
|
|
(labs(ahrs.pitch_sensor) > AUTOTUNE_LEVEL_ANGLE_CD) || |
|
|
|
|
(labs(wrap_180_cd(ahrs.yaw_sensor-(int32_t)autotune_desired_yaw)) > AUTOTUNE_LEVEL_ANGLE_CD) || |
|
|
|
|
((ToDeg(ahrs.get_gyro().x) * 100.0f) > AUTOTUNE_LEVEL_RATE_RP_CD) || |
|
|
|
|
((ToDeg(ahrs.get_gyro().y) * 100.0f) > AUTOTUNE_LEVEL_RATE_RP_CD) || |
|
|
|
|
((ToDeg(ahrs.get_gyro().z) * 100.0f) > AUTOTUNE_LEVEL_RATE_Y_CD) ) { |
|
|
|
|
autotune_step_start_time = millis(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// if we have been level for a sufficient amount of time (0.25 seconds) move onto tuning step |
|
|
|
|
// if we have been level for a sufficient amount of time (0.5 seconds) move onto tuning step |
|
|
|
|
if (millis() - autotune_step_start_time >= AUTOTUNE_REQUIRED_LEVEL_TIME_MS) { |
|
|
|
|
// initiate variables for next step |
|
|
|
|
autotune_state.step = AUTOTUNE_STEP_TWITCHING; |
|
|
|
@ -357,7 +369,7 @@ static void autotune_attitude_control()
@@ -357,7 +369,7 @@ static void autotune_attitude_control()
|
|
|
|
|
autotune_step_stop_time = autotune_step_start_time + AUTOTUNE_TESTING_STEP_TIMEOUT_MS; |
|
|
|
|
autotune_test_max = 0.0f; |
|
|
|
|
autotune_test_min = 0.0f; |
|
|
|
|
rotation_rate = 0.0f; |
|
|
|
|
rotation_rate_filt.reset(0.0f); |
|
|
|
|
rate_max = 0.0f; |
|
|
|
|
// set gains to their to-be-tested values |
|
|
|
|
autotune_load_twitch_gains(); |
|
|
|
@ -369,18 +381,36 @@ static void autotune_attitude_control()
@@ -369,18 +381,36 @@ static void autotune_attitude_control()
|
|
|
|
|
autotune_target_angle = constrain_float(attitude_control.max_angle_step_bf_roll(), AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD); |
|
|
|
|
autotune_start_rate = ToDeg(ahrs.get_gyro().x) * 100.0f; |
|
|
|
|
autotune_start_angle = ahrs.roll_sensor; |
|
|
|
|
rotation_rate_filt.set_cutoff_frequency(MAIN_LOOP_SECONDS,g.pid_rate_roll.filt_hz()*4.0f); |
|
|
|
|
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { |
|
|
|
|
rotation_rate_filt.reset(autotune_start_rate); |
|
|
|
|
} else { |
|
|
|
|
rotation_rate_filt.reset(0); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case AUTOTUNE_AXIS_PITCH: |
|
|
|
|
autotune_target_rate = constrain_float(attitude_control.max_rate_step_bf_pitch(), AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, AUTOTUNE_TARGET_RATE_RLLPIT_CDS); |
|
|
|
|
autotune_target_angle = constrain_float(attitude_control.max_angle_step_bf_pitch(), AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD); |
|
|
|
|
autotune_start_rate = ToDeg(ahrs.get_gyro().y) * 100.0f; |
|
|
|
|
autotune_start_angle = ahrs.pitch_sensor; |
|
|
|
|
rotation_rate_filt.set_cutoff_frequency(MAIN_LOOP_SECONDS,g.pid_rate_pitch.filt_hz()*4.0f); |
|
|
|
|
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { |
|
|
|
|
rotation_rate_filt.reset(autotune_start_rate); |
|
|
|
|
} else { |
|
|
|
|
rotation_rate_filt.reset(0); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case AUTOTUNE_AXIS_YAW: |
|
|
|
|
autotune_target_rate = constrain_float(attitude_control.max_rate_step_bf_yaw()/1.5f, AUTOTUNE_TARGET_MIN_RATE_YAW_CDS, AUTOTUNE_TARGET_RATE_YAW_CDS); |
|
|
|
|
autotune_target_angle = constrain_float(attitude_control.max_angle_step_bf_yaw(), AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD, AUTOTUNE_TARGET_ANGLE_YAW_CD); |
|
|
|
|
autotune_start_rate = ToDeg(ahrs.get_gyro().z) * 100.0f; |
|
|
|
|
autotune_start_angle = ahrs.yaw_sensor; |
|
|
|
|
rotation_rate_filt.set_cutoff_frequency(MAIN_LOOP_SECONDS,orig_yaw_rLPF*4.0f); |
|
|
|
|
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { |
|
|
|
|
rotation_rate_filt.reset(autotune_start_rate); |
|
|
|
|
} else { |
|
|
|
|
rotation_rate_filt.reset(0); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
@ -434,25 +464,25 @@ static void autotune_attitude_control()
@@ -434,25 +464,25 @@ static void autotune_attitude_control()
|
|
|
|
|
switch (autotune_state.axis) { |
|
|
|
|
case AUTOTUNE_AXIS_ROLL: |
|
|
|
|
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { |
|
|
|
|
rotation_rate = direction_sign * (ToDeg(ahrs.get_gyro().x) * 100.0f); |
|
|
|
|
rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().x) * 100.0f)); |
|
|
|
|
} else { |
|
|
|
|
rotation_rate = direction_sign * (ToDeg(ahrs.get_gyro().x) * 100.0f - autotune_start_rate); |
|
|
|
|
rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().x) * 100.0f - autotune_start_rate)); |
|
|
|
|
} |
|
|
|
|
lean_angle = direction_sign * (ahrs.roll_sensor - (int32_t)autotune_start_angle); |
|
|
|
|
break; |
|
|
|
|
case AUTOTUNE_AXIS_PITCH: |
|
|
|
|
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { |
|
|
|
|
rotation_rate = direction_sign * (ToDeg(ahrs.get_gyro().y) * 100.0f); |
|
|
|
|
rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().y) * 100.0f)); |
|
|
|
|
} else { |
|
|
|
|
rotation_rate = direction_sign * (ToDeg(ahrs.get_gyro().y) * 100.0f - autotune_start_rate); |
|
|
|
|
rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().y) * 100.0f - autotune_start_rate)); |
|
|
|
|
} |
|
|
|
|
lean_angle = direction_sign * (ahrs.pitch_sensor - (int32_t)autotune_start_angle); |
|
|
|
|
break; |
|
|
|
|
case AUTOTUNE_AXIS_YAW: |
|
|
|
|
if ((autotune_state.tune_type == AUTOTUNE_TYPE_SP_DOWN) || (autotune_state.tune_type == AUTOTUNE_TYPE_SP_UP)) { |
|
|
|
|
rotation_rate = direction_sign * (ToDeg(ahrs.get_gyro().z) * 100.0f); |
|
|
|
|
rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().z) * 100.0f)); |
|
|
|
|
} else { |
|
|
|
|
rotation_rate = direction_sign * (ToDeg(ahrs.get_gyro().z) * 100.0f - autotune_start_rate); |
|
|
|
|
rotation_rate = rotation_rate_filt.apply(direction_sign * (ToDeg(ahrs.get_gyro().z) * 100.0f - autotune_start_rate)); |
|
|
|
|
} |
|
|
|
|
lean_angle = direction_sign * wrap_180_cd(ahrs.yaw_sensor-(int32_t)autotune_start_angle); |
|
|
|
|
break; |
|
|
|
@ -717,7 +747,10 @@ static void autotune_backup_gains_and_initialise()
@@ -717,7 +747,10 @@ static void autotune_backup_gains_and_initialise()
|
|
|
|
|
autotune_state.step = AUTOTUNE_STEP_WAITING_FOR_LEVEL; |
|
|
|
|
autotune_step_start_time = millis(); |
|
|
|
|
autotune_state.tune_type = AUTOTUNE_TYPE_RD_UP; |
|
|
|
|
autotune_start_angle = ahrs.yaw_sensor; |
|
|
|
|
|
|
|
|
|
autotune_desired_yaw = ahrs.yaw_sensor; |
|
|
|
|
|
|
|
|
|
g.autotune_aggressiveness = constrain_float(g.autotune_aggressiveness, 0.05, 0.1); |
|
|
|
|
|
|
|
|
|
// backup original pids and initialise tuned pid values |
|
|
|
|
if (autotune_roll_enabled()) { |
|
|
|
@ -1090,22 +1123,26 @@ void autotune_updating_d_up(float &tune_d, float tune_d_min, float tune_d_max, f
@@ -1090,22 +1123,26 @@ void autotune_updating_d_up(float &tune_d, float tune_d_min, float tune_d_max, f
|
|
|
|
|
}else{ |
|
|
|
|
// we have a good measurement of bounce back |
|
|
|
|
if (measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) { |
|
|
|
|
// ignore the next result unless it is the same as this one |
|
|
|
|
autotune_state.ignore_next = 1; |
|
|
|
|
// bounce back is bigger than our threshold so increment the success counter |
|
|
|
|
autotune_counter++; |
|
|
|
|
// cancel change in direction |
|
|
|
|
autotune_state.positive_direction = !autotune_state.positive_direction; |
|
|
|
|
}else{ |
|
|
|
|
// bounce back is smaller than our threshold so decrement the success counter |
|
|
|
|
if (autotune_counter > 0 ) { |
|
|
|
|
autotune_counter--; |
|
|
|
|
} |
|
|
|
|
// increase D gain (which should increase bounce back) |
|
|
|
|
tune_d += tune_d*tune_d_step_ratio*2.0f; |
|
|
|
|
// stop tuning if we hit maximum D |
|
|
|
|
if (tune_d >= tune_d_max) { |
|
|
|
|
tune_d = tune_d_max; |
|
|
|
|
autotune_counter = AUTOTUNE_SUCCESS_COUNT; |
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
if (autotune_state.ignore_next == 0){ |
|
|
|
|
// bounce back is smaller than our threshold so decrement the success counter |
|
|
|
|
if (autotune_counter > 0 ) { |
|
|
|
|
autotune_counter--; |
|
|
|
|
} |
|
|
|
|
// increase D gain (which should increase bounce back) |
|
|
|
|
tune_d += tune_d*tune_d_step_ratio*2.0f; |
|
|
|
|
// stop tuning if we hit maximum D |
|
|
|
|
if (tune_d >= tune_d_max) { |
|
|
|
|
tune_d = tune_d_max; |
|
|
|
|
autotune_counter = AUTOTUNE_SUCCESS_COUNT; |
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
autotune_state.ignore_next = 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -1137,15 +1174,19 @@ void autotune_updating_d_down(float &tune_d, float tune_d_min, float tune_d_step
@@ -1137,15 +1174,19 @@ void autotune_updating_d_down(float &tune_d, float tune_d_min, float tune_d_step
|
|
|
|
|
}else{ |
|
|
|
|
// we have a good measurement of bounce back |
|
|
|
|
if (measurement_max-measurement_min < measurement_max*g.autotune_aggressiveness) { |
|
|
|
|
// bounce back is less than our threshold so increment the success counter |
|
|
|
|
autotune_counter++; |
|
|
|
|
if (autotune_state.ignore_next == 0){ |
|
|
|
|
// bounce back is less than our threshold so increment the success counter |
|
|
|
|
autotune_counter++; |
|
|
|
|
} else { |
|
|
|
|
autotune_state.ignore_next = 0; |
|
|
|
|
} |
|
|
|
|
}else{ |
|
|
|
|
// ignore the next result unless it is the same as this one |
|
|
|
|
autotune_state.ignore_next = 1; |
|
|
|
|
// bounce back is larger than our threshold so decrement the success counter |
|
|
|
|
if (autotune_counter > 0 ) { |
|
|
|
|
autotune_counter--; |
|
|
|
|
} |
|
|
|
|
// cancel change in direction |
|
|
|
|
autotune_state.positive_direction = !autotune_state.positive_direction; |
|
|
|
|
// decrease D gain (which should decrease bounce back) |
|
|
|
|
tune_d -= tune_d*tune_d_step_ratio; |
|
|
|
|
// stop tuning if we hit minimum D |
|
|
|
@ -1163,15 +1204,19 @@ void autotune_updating_d_down(float &tune_d, float tune_d_min, float tune_d_step
@@ -1163,15 +1204,19 @@ void autotune_updating_d_down(float &tune_d, float tune_d_min, float tune_d_step
|
|
|
|
|
void autotune_updating_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float target, float measurement_max) |
|
|
|
|
{ |
|
|
|
|
if (measurement_max < target) { |
|
|
|
|
// if maximum measurement was lower than target so increment the success counter |
|
|
|
|
autotune_counter++; |
|
|
|
|
if (autotune_state.ignore_next == 0){ |
|
|
|
|
// if maximum measurement was lower than target so increment the success counter |
|
|
|
|
autotune_counter++; |
|
|
|
|
} else { |
|
|
|
|
autotune_state.ignore_next = 0; |
|
|
|
|
} |
|
|
|
|
}else{ |
|
|
|
|
// ignore the next result unless it is the same as this one |
|
|
|
|
autotune_state.ignore_next = 1; |
|
|
|
|
// if maximum measurement was higher than target so decrement the success counter |
|
|
|
|
if (autotune_counter > 0 ) { |
|
|
|
|
autotune_counter--; |
|
|
|
|
} |
|
|
|
|
// cancel change in direction |
|
|
|
|
autotune_state.positive_direction = !autotune_state.positive_direction; |
|
|
|
|
// decrease P gain (which should decrease the maximum) |
|
|
|
|
tune_p -= tune_p*tune_p_step_ratio; |
|
|
|
|
// stop tuning if we hit maximum P |
|
|
|
@ -1188,22 +1233,26 @@ void autotune_updating_p_down(float &tune_p, float tune_p_min, float tune_p_step
@@ -1188,22 +1233,26 @@ void autotune_updating_p_down(float &tune_p, float tune_p_min, float tune_p_step
|
|
|
|
|
void autotune_updating_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float target, float measurement_max) |
|
|
|
|
{ |
|
|
|
|
if (measurement_max > target) { |
|
|
|
|
// ignore the next result unless it is the same as this one |
|
|
|
|
autotune_state.ignore_next = 1; |
|
|
|
|
// if maximum measurement was greater than target so increment the success counter |
|
|
|
|
autotune_counter++; |
|
|
|
|
// cancel change in direction |
|
|
|
|
autotune_state.positive_direction = !autotune_state.positive_direction; |
|
|
|
|
}else{ |
|
|
|
|
// if maximum measurement was lower than target so decrement the success counter |
|
|
|
|
if (autotune_counter > 0 ) { |
|
|
|
|
autotune_counter--; |
|
|
|
|
} |
|
|
|
|
// increase P gain (which should increase the maximum) |
|
|
|
|
tune_p += tune_p*tune_p_step_ratio; |
|
|
|
|
// stop tuning if we hit maximum P |
|
|
|
|
if (tune_p >= tune_p_max) { |
|
|
|
|
tune_p = tune_p_max; |
|
|
|
|
autotune_counter = AUTOTUNE_SUCCESS_COUNT; |
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
if (autotune_state.ignore_next == 0){ |
|
|
|
|
// if maximum measurement was lower than target so decrement the success counter |
|
|
|
|
if (autotune_counter > 0 ) { |
|
|
|
|
autotune_counter--; |
|
|
|
|
} |
|
|
|
|
// increase P gain (which should increase the maximum) |
|
|
|
|
tune_p += tune_p*tune_p_step_ratio; |
|
|
|
|
// stop tuning if we hit maximum P |
|
|
|
|
if (tune_p >= tune_p_max) { |
|
|
|
|
tune_p = tune_p_max; |
|
|
|
|
autotune_counter = AUTOTUNE_SUCCESS_COUNT; |
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
autotune_state.ignore_next = 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -1213,17 +1262,15 @@ void autotune_updating_p_up(float &tune_p, float tune_p_max, float tune_p_step_r
@@ -1213,17 +1262,15 @@ void autotune_updating_p_up(float &tune_p, float tune_p_max, float tune_p_step_r
|
|
|
|
|
void autotune_updating_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float target, float measurement_min, float measurement_max) |
|
|
|
|
{ |
|
|
|
|
if (measurement_max > target) { |
|
|
|
|
// ignore the next result unless it is the same as this one |
|
|
|
|
autotune_state.ignore_next = 1; |
|
|
|
|
// if maximum measurement was greater than target so increment the success counter |
|
|
|
|
autotune_counter++; |
|
|
|
|
// cancel change in direction |
|
|
|
|
autotune_state.positive_direction = !autotune_state.positive_direction; |
|
|
|
|
}else if ((measurement_max-measurement_min > measurement_max*g.autotune_aggressiveness) && (tune_d > tune_d_min)) { |
|
|
|
|
// if bounce back was larger than the threshold so decrement the success counter |
|
|
|
|
if (autotune_counter > 0 ) { |
|
|
|
|
autotune_counter--; |
|
|
|
|
} |
|
|
|
|
// cancel change in direction |
|
|
|
|
autotune_state.positive_direction = !autotune_state.positive_direction; |
|
|
|
|
// decrease D gain (which should decrease bounce back) |
|
|
|
|
tune_d -= tune_d*tune_d_step_ratio; |
|
|
|
|
// stop tuning if we hit minimum D |
|
|
|
@ -1238,18 +1285,24 @@ void autotune_updating_p_up_d_down(float &tune_d, float tune_d_min, float tune_d
@@ -1238,18 +1285,24 @@ void autotune_updating_p_up_d_down(float &tune_d, float tune_d_min, float tune_d
|
|
|
|
|
tune_p = tune_p_min; |
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
} |
|
|
|
|
// cancel change in direction |
|
|
|
|
autotune_state.positive_direction = !autotune_state.positive_direction; |
|
|
|
|
}else{ |
|
|
|
|
// if maximum measurement was lower than target so decrement the success counter |
|
|
|
|
if (autotune_counter > 0 ) { |
|
|
|
|
autotune_counter--; |
|
|
|
|
} |
|
|
|
|
// increase P gain (which should increase the maximum) |
|
|
|
|
tune_p += tune_p*tune_p_step_ratio; |
|
|
|
|
// stop tuning if we hit maximum P |
|
|
|
|
if (tune_p >= tune_p_max) { |
|
|
|
|
tune_p = tune_p_max; |
|
|
|
|
autotune_counter = AUTOTUNE_SUCCESS_COUNT; |
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
if (autotune_state.ignore_next == 0){ |
|
|
|
|
// if maximum measurement was lower than target so decrement the success counter |
|
|
|
|
if (autotune_counter > 0 ) { |
|
|
|
|
autotune_counter--; |
|
|
|
|
} |
|
|
|
|
// increase P gain (which should increase the maximum) |
|
|
|
|
tune_p += tune_p*tune_p_step_ratio; |
|
|
|
|
// stop tuning if we hit maximum P |
|
|
|
|
if (tune_p >= tune_p_max) { |
|
|
|
|
tune_p = tune_p_max; |
|
|
|
|
autotune_counter = AUTOTUNE_SUCCESS_COUNT; |
|
|
|
|
Log_Write_Event(DATA_AUTOTUNE_REACHED_LIMIT); |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
autotune_state.ignore_next = 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|