4 changed files with 189 additions and 162 deletions
@ -0,0 +1,161 @@
@@ -0,0 +1,161 @@
|
||||
|
||||
#include <avr/io.h> |
||||
#include <avr/interrupt.h> |
||||
|
||||
#include "HAL_AVR.h" |
||||
#include "Scheduler.h" |
||||
using namespace AP_HAL_AVR; |
||||
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) |
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) |
||||
|
||||
static volatile uint32_t timer0_overflow_count = 0; |
||||
static volatile uint32_t timer0_millis = 0; |
||||
static uint8_t timer0_fract = 0; |
||||
|
||||
|
||||
void AVRTimer::init() { |
||||
// this needs to be called before setup() or some functions won't
|
||||
// work there
|
||||
sei(); |
||||
|
||||
// set timer 0 prescale factor to 64
|
||||
// this combination is for the standard 168/328/1280/2560
|
||||
sbi(TCCR0B, CS01); |
||||
sbi(TCCR0B, CS00); |
||||
// enable timer 0 overflow interrupt
|
||||
sbi(TIMSK0, TOIE0); |
||||
|
||||
// timers 1 and 2 are used for phase-correct hardware pwm
|
||||
// this is better for motors as it ensures an even waveform
|
||||
// note, however, that fast pwm mode can achieve a frequency of up
|
||||
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
|
||||
|
||||
TCCR1B = 0; |
||||
|
||||
// set timer 1 prescale factor to 64
|
||||
sbi(TCCR1B, CS11); |
||||
sbi(TCCR1B, CS10); |
||||
// put timer 1 in 8-bit phase correct pwm mode
|
||||
sbi(TCCR1A, WGM10); |
||||
|
||||
sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
|
||||
sbi(TCCR3B, CS30); |
||||
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
|
||||
|
||||
sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
|
||||
sbi(TCCR4B, CS40); |
||||
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
|
||||
|
||||
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
|
||||
sbi(TCCR5B, CS50); |
||||
sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
|
||||
|
||||
// set a2d prescale factor to 128
|
||||
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
|
||||
// XXX: this will not work properly for other clock speeds, and
|
||||
// this code should use F_CPU to determine the prescale factor.
|
||||
sbi(ADCSRA, ADPS2); |
||||
sbi(ADCSRA, ADPS1); |
||||
sbi(ADCSRA, ADPS0); |
||||
|
||||
// enable a2d conversions
|
||||
sbi(ADCSRA, ADEN); |
||||
|
||||
// the bootloader connects pins 0 and 1 to the USART; disconnect them
|
||||
// here so they can be used as normal digital i/o; they will be
|
||||
// reconnected in Serial.begin()
|
||||
UCSR0B = 0; |
||||
} |
||||
|
||||
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L ) |
||||
#define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) ) |
||||
|
||||
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
|
||||
// the overflow handler is called every 256 ticks.
|
||||
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256)) |
||||
|
||||
// the whole number of milliseconds per timer0 overflow
|
||||
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000) |
||||
|
||||
// the fractional number of milliseconds per timer0 overflow. we shift right
|
||||
// by three to fit these numbers into a byte. (for the clock speeds we care
|
||||
// about - 8 and 16 MHz - this doesn't lose precision.)
|
||||
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3) |
||||
#define FRACT_MAX (1000 >> 3) |
||||
|
||||
|
||||
SIGNAL(TIMER0_OVF_vect) |
||||
{ |
||||
// copy these to local variables so they can be stored in registers
|
||||
// (volatile variables must be read from memory on every access)
|
||||
uint32_t m = timer0_millis; |
||||
uint8_t f = timer0_fract; |
||||
|
||||
m += MILLIS_INC; |
||||
f += FRACT_INC; |
||||
if (f >= FRACT_MAX) { |
||||
f -= FRACT_MAX; |
||||
m += 1; |
||||
} |
||||
|
||||
timer0_fract = f; |
||||
timer0_millis = m; |
||||
timer0_overflow_count++; |
||||
} |
||||
|
||||
uint32_t AVRTimer::millis() |
||||
{ |
||||
uint32_t m; |
||||
uint8_t oldSREG = SREG; |
||||
|
||||
// disable interrupts while we read timer0_millis or we might get an
|
||||
// inconsistent value (e.g. in the middle of a write to timer0_millis)
|
||||
cli(); |
||||
m = timer0_millis; |
||||
SREG = oldSREG; |
||||
|
||||
return m; |
||||
} |
||||
|
||||
uint32_t AVRTimer::micros() { |
||||
uint32_t m; |
||||
uint8_t t; |
||||
|
||||
uint8_t oldSREG = SREG; |
||||
cli(); |
||||
|
||||
m = timer0_overflow_count; |
||||
t = TCNT0; |
||||
|
||||
if ((TIFR0 & _BV(TOV0)) && (t < 255)) |
||||
m++; |
||||
|
||||
SREG = oldSREG; |
||||
|
||||
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond()); |
||||
} |
||||
|
||||
/* Delay for the given number of microseconds. Assumes a 16 MHz clock. */ |
||||
void AVRTimer::delay_microseconds(uint16_t us) |
||||
{ |
||||
// for the 16 MHz clock on most Arduino boards
|
||||
// for a one-microsecond delay, simply return. the overhead
|
||||
// of the function call yields a delay of approximately 1 1/8 us.
|
||||
if (--us == 0) |
||||
return; |
||||
|
||||
// the following loop takes a quarter of a microsecond (4 cycles)
|
||||
// per iteration, so execute it four times for each microsecond of
|
||||
// delay requested.
|
||||
us <<= 2; |
||||
|
||||
// account for the time taken in the preceeding commands.
|
||||
us -= 2; |
||||
|
||||
// busy wait
|
||||
__asm__ __volatile__ ( |
||||
"1: sbiw %0,1" "\n\t" // 2 cycles
|
||||
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
|
||||
); |
||||
} |
Loading…
Reference in new issue