|
|
|
@ -5,33 +5,39 @@
@@ -5,33 +5,39 @@
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
#include "AP_RAMTRON.h" |
|
|
|
|
#include <AP_Math/crc.h> |
|
|
|
|
#include <AP_Math/AP_Math.h> |
|
|
|
|
|
|
|
|
|
extern const AP_HAL::HAL &hal; |
|
|
|
|
|
|
|
|
|
// register numbers
|
|
|
|
|
#define RAMTRON_RDID 0x9f |
|
|
|
|
#define RAMTRON_READ 0x03 |
|
|
|
|
#define RAMTRON_RDSR 0x05 |
|
|
|
|
#define RAMTRON_WREN 0x06 |
|
|
|
|
#define RAMTRON_WRITE 0x02 |
|
|
|
|
static const uint8_t RAMTRON_RDID = 0x9f; |
|
|
|
|
static const uint8_t RAMTRON_READ = 0x03; |
|
|
|
|
static const uint8_t RAMTRON_WREN = 0x06; |
|
|
|
|
static const uint8_t RAMTRON_WRITE = 0x02; |
|
|
|
|
|
|
|
|
|
#define RAMTRON_RETRIES 10 |
|
|
|
|
#define RAMTRON_DELAY_MS 10 |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
list of supported devices. Thanks to NuttX ramtron driver |
|
|
|
|
*/ |
|
|
|
|
const AP_RAMTRON::ramtron_id AP_RAMTRON::ramtron_ids[] = { |
|
|
|
|
{ 0x21, 0x00, 16, 2}, // FM25V01
|
|
|
|
|
{ 0x21, 0x08, 16, 2}, // FM25V01A
|
|
|
|
|
{ 0x22, 0x00, 32, 2}, // FM25V02
|
|
|
|
|
{ 0x22, 0x08, 32, 2}, // FM25V02A
|
|
|
|
|
{ 0x22, 0x01, 32, 2}, // FM25VN02
|
|
|
|
|
{ 0x23, 0x00, 64, 2}, // FM25V05
|
|
|
|
|
{ 0x23, 0x01, 64, 2}, // FM25VN05
|
|
|
|
|
{ 0x24, 0x00, 128, 3}, // FM25V10
|
|
|
|
|
{ 0x24, 0x01, 128, 3}, // FM25VN10
|
|
|
|
|
{ 0x25, 0x08, 256, 3}, // FM25V20A
|
|
|
|
|
{ 0x26, 0x08, 512, 3}, // CY15B104Q
|
|
|
|
|
{ 0x27, 0x03, 128, 3}, // MB85RS1MT
|
|
|
|
|
{ 0x05, 0x09, 32, 3}, // B85RS256B
|
|
|
|
|
{ 0x21, 0x00, 16, 2, RDID_type::Cypress }, // FM25V01
|
|
|
|
|
{ 0x21, 0x08, 16, 2, RDID_type::Cypress }, // FM25V01A
|
|
|
|
|
{ 0x22, 0x00, 32, 2, RDID_type::Cypress }, // FM25V02
|
|
|
|
|
{ 0x22, 0x08, 32, 2, RDID_type::Cypress }, // FM25V02A
|
|
|
|
|
{ 0x22, 0x01, 32, 2, RDID_type::Cypress }, // FM25VN02
|
|
|
|
|
{ 0x23, 0x00, 64, 2, RDID_type::Cypress }, // FM25V05
|
|
|
|
|
{ 0x23, 0x01, 64, 2, RDID_type::Cypress }, // FM25VN05
|
|
|
|
|
{ 0x24, 0x00, 128, 3, RDID_type::Cypress }, // FM25V10
|
|
|
|
|
{ 0x24, 0x01, 128, 3, RDID_type::Cypress }, // FM25VN10
|
|
|
|
|
{ 0x25, 0x08, 256, 3, RDID_type::Cypress }, // FM25V20A
|
|
|
|
|
{ 0x26, 0x08, 512, 3, RDID_type::Cypress }, // CY15B104Q
|
|
|
|
|
|
|
|
|
|
{ 0x27, 0x03, 128, 3, RDID_type::Fujitsu }, // MB85RS1MT
|
|
|
|
|
{ 0x05, 0x09, 32, 2, RDID_type::Fujitsu }, // MB85RS256B
|
|
|
|
|
{ 0x24, 0x03, 16, 2, RDID_type::Fujitsu }, // MB85RS128TY
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
// initialise the driver
|
|
|
|
@ -39,36 +45,59 @@ bool AP_RAMTRON::init(void)
@@ -39,36 +45,59 @@ bool AP_RAMTRON::init(void)
|
|
|
|
|
{ |
|
|
|
|
dev = hal.spi->get_device("ramtron"); |
|
|
|
|
if (!dev) { |
|
|
|
|
hal.console->printf("No RAMTRON device\n"); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
WITH_SEMAPHORE(dev->get_semaphore()); |
|
|
|
|
|
|
|
|
|
struct rdid { |
|
|
|
|
struct cypress_rdid { |
|
|
|
|
uint8_t manufacturer[6]; |
|
|
|
|
uint8_t memory; |
|
|
|
|
uint8_t id1; |
|
|
|
|
uint8_t id2; |
|
|
|
|
} rdid; |
|
|
|
|
if (!dev->read_registers(RAMTRON_RDID, (uint8_t *)&rdid, sizeof(rdid))) { |
|
|
|
|
}; |
|
|
|
|
struct fujitsu_rdid { |
|
|
|
|
uint8_t manufacturer[2]; |
|
|
|
|
uint8_t id1; |
|
|
|
|
uint8_t id2; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
uint8_t rdid[sizeof(cypress_rdid)]; |
|
|
|
|
|
|
|
|
|
if (!dev->read_registers(RAMTRON_RDID, rdid, sizeof(rdid))) { |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (uint8_t i=0; i<ARRAY_SIZE(ramtron_ids); i++) { |
|
|
|
|
if (ramtron_ids[i].id1 == rdid.id1 && |
|
|
|
|
ramtron_ids[i].id2 == rdid.id2) { |
|
|
|
|
id = i; |
|
|
|
|
return true; |
|
|
|
|
for (uint8_t i = 0; i < ARRAY_SIZE(ramtron_ids); i++) { |
|
|
|
|
if (ramtron_ids[i].rdid_type == RDID_type::Cypress) { |
|
|
|
|
cypress_rdid const * const cypress = (cypress_rdid const * const)rdid; |
|
|
|
|
if (ramtron_ids[i].id1 == cypress->id1 && |
|
|
|
|
ramtron_ids[i].id2 == cypress->id2) { |
|
|
|
|
id = i; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} else if (ramtron_ids[i].rdid_type == RDID_type::Fujitsu) { |
|
|
|
|
fujitsu_rdid const * const fujitsu = (fujitsu_rdid const * const)rdid; |
|
|
|
|
if (ramtron_ids[i].id1 == fujitsu->id1 && |
|
|
|
|
ramtron_ids[i].id2 == fujitsu->id2) { |
|
|
|
|
id = i; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
hal.console->printf("Unknown RAMTRON manufacturer=%02x memory=%02x id1=%02x id2=%02x\n", |
|
|
|
|
rdid.manufacturer[0], rdid.memory, rdid.id1, rdid.id2); |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
if (id == UINT8_MAX) { |
|
|
|
|
hal.console->printf("Unknown RAMTRON device\n"); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
send a command and offset |
|
|
|
|
*/ |
|
|
|
|
void AP_RAMTRON::send_offset(uint8_t cmd, uint32_t offset) |
|
|
|
|
void AP_RAMTRON::send_offset(uint8_t cmd, uint32_t offset) const |
|
|
|
|
{ |
|
|
|
|
if (ramtron_ids[id].addrlen == 3) { |
|
|
|
|
uint8_t b[4] = { cmd, uint8_t((offset>>16)&0xFF), uint8_t((offset>>8)&0xFF), uint8_t(offset&0xFF) }; |
|
|
|
@ -82,6 +111,14 @@ void AP_RAMTRON::send_offset(uint8_t cmd, uint32_t offset)
@@ -82,6 +111,14 @@ void AP_RAMTRON::send_offset(uint8_t cmd, uint32_t offset)
|
|
|
|
|
// read from device
|
|
|
|
|
bool AP_RAMTRON::read(uint32_t offset, uint8_t *buf, uint32_t size) |
|
|
|
|
{ |
|
|
|
|
// Don't allow reads outside of the FRAM memory.
|
|
|
|
|
// NOTE: The FRAM devices will wrap back to address 0x0000 if they read past
|
|
|
|
|
// the end of their internal memory, so while we'll get data back, it won't
|
|
|
|
|
// be what we expect.
|
|
|
|
|
if ((size > get_size()) || |
|
|
|
|
(offset > (get_size() - size))) { |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
const uint8_t maxread = 128; |
|
|
|
|
while (size > maxread) { |
|
|
|
|
if (!read(offset, buf, maxread)) { |
|
|
|
@ -92,36 +129,90 @@ bool AP_RAMTRON::read(uint32_t offset, uint8_t *buf, uint32_t size)
@@ -92,36 +129,90 @@ bool AP_RAMTRON::read(uint32_t offset, uint8_t *buf, uint32_t size)
|
|
|
|
|
size -= maxread; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
WITH_SEMAPHORE(dev->get_semaphore()); |
|
|
|
|
for (uint8_t r=0; r<RAMTRON_RETRIES; r++) { |
|
|
|
|
if (r != 0) { |
|
|
|
|
hal.scheduler->delay(RAMTRON_DELAY_MS); |
|
|
|
|
} |
|
|
|
|
/*
|
|
|
|
|
transfer each block twice and compare with a crc. This is to |
|
|
|
|
prevent transient errors from causing parameter corruption |
|
|
|
|
*/ |
|
|
|
|
{ |
|
|
|
|
WITH_SEMAPHORE(dev->get_semaphore()); |
|
|
|
|
dev->set_chip_select(true); |
|
|
|
|
send_offset(RAMTRON_READ, offset); |
|
|
|
|
dev->transfer(nullptr, 0, buf, size); |
|
|
|
|
dev->set_chip_select(false); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
dev->set_chip_select(true); |
|
|
|
|
uint32_t crc1 = crc_crc32(0, buf, size); |
|
|
|
|
|
|
|
|
|
send_offset(RAMTRON_READ, offset); |
|
|
|
|
|
|
|
|
|
// get data
|
|
|
|
|
dev->transfer(nullptr, 0, buf, size); |
|
|
|
|
{ |
|
|
|
|
WITH_SEMAPHORE(dev->get_semaphore()); |
|
|
|
|
dev->set_chip_select(true); |
|
|
|
|
send_offset(RAMTRON_READ, offset); |
|
|
|
|
dev->transfer(nullptr, 0, buf, size); |
|
|
|
|
dev->set_chip_select(false); |
|
|
|
|
} |
|
|
|
|
uint32_t crc2 = crc_crc32(0, buf, size); |
|
|
|
|
|
|
|
|
|
dev->set_chip_select(false); |
|
|
|
|
if (crc1 == crc2) { |
|
|
|
|
// all good
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// write to device
|
|
|
|
|
bool AP_RAMTRON::write(uint32_t offset, const uint8_t *buf, uint32_t size) |
|
|
|
|
{ |
|
|
|
|
// Don't allow writes outside of the FRAM memory.
|
|
|
|
|
// NOTE: The FRAM devices will wrap back to address 0x0000 if they write past
|
|
|
|
|
// the end of their internal memory, so we could accidentally overwrite the
|
|
|
|
|
// wrong memory location.
|
|
|
|
|
if ((size > get_size()) || |
|
|
|
|
(offset > (get_size() - size))) { |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
WITH_SEMAPHORE(dev->get_semaphore()); |
|
|
|
|
|
|
|
|
|
// write enable
|
|
|
|
|
uint8_t r = RAMTRON_WREN; |
|
|
|
|
dev->transfer(&r, 1, nullptr, 0); |
|
|
|
|
|
|
|
|
|
dev->set_chip_select(true); |
|
|
|
|
for (uint8_t r=0; r<RAMTRON_RETRIES; r++) { |
|
|
|
|
if (r != 0) { |
|
|
|
|
hal.scheduler->delay(RAMTRON_DELAY_MS); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
send_offset(RAMTRON_WRITE, offset); |
|
|
|
|
// we need to enable writes every time. The WREN bit is
|
|
|
|
|
// automatically reset on completion of the write call
|
|
|
|
|
dev->set_chip_select(true); |
|
|
|
|
dev->transfer(&RAMTRON_WREN, 1, nullptr, 0); |
|
|
|
|
dev->set_chip_select(false); |
|
|
|
|
|
|
|
|
|
dev->transfer(buf, size, nullptr, 0); |
|
|
|
|
dev->set_chip_select(true); |
|
|
|
|
send_offset(RAMTRON_WRITE, offset); |
|
|
|
|
dev->transfer(buf, size, nullptr, 0); |
|
|
|
|
dev->set_chip_select(false); |
|
|
|
|
|
|
|
|
|
dev->set_chip_select(false); |
|
|
|
|
/*
|
|
|
|
|
verify first 32 bytes of every write using a crc |
|
|
|
|
*/ |
|
|
|
|
uint8_t rbuf[32] {}; |
|
|
|
|
const uint8_t nverify = MIN(size, sizeof(rbuf)); |
|
|
|
|
uint32_t crc1 = crc_crc32(0, buf, nverify); |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
dev->set_chip_select(true); |
|
|
|
|
send_offset(RAMTRON_READ, offset); |
|
|
|
|
dev->transfer(nullptr, 0, rbuf, nverify); |
|
|
|
|
dev->set_chip_select(false); |
|
|
|
|
|
|
|
|
|
uint32_t crc2 = crc_crc32(0, rbuf, nverify); |
|
|
|
|
|
|
|
|
|
if (crc1 == crc2) { |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|