Sometimes (like in DataFlash) the size of the ring buffer will be
determined in run time and the object can have size zero until proper
initialization. When this was the case, an underflow in ::get_size would
mess with the initializing algorithm.
Another issue was that the 'new' operator could fail what was not being
handled. Now, we only set the size member after we are sure 'new'
successfully allocated memory.
Constructor allocate '_samples' but there was no destructor to
deallocate it. Also, initializes '_gain' to silence CID 9144 although
'_gain' wasn't being used uninitialized because of ::init().
CID 91424
- causes immediate timeout so all samples were dropped
- now the timeout is current and respects the time-since-last-comms/packet so we can ignore stale packets
- That contains our previous cherry-picked commits.
- That fixes the issue of builds not storing data in
`build/<board>/compile_commands.json` files (reported by #4580).
- reorder and document members.
- remove tentative of vertical alignement
- like was done for accumulated values, move the calibration
values to a struct
This converts MS56XX to use the thread started by SPI/I2C instead of
using the timer thread. This also fixes a possible starvation of the
main thread:
1) INS driver registers itself to be sampled on timer thread
2) MS56XX registers itself to be sampled on timer thread
3) Main thread waits for a sample from INS with
ins.wait_for_sample()
4) timer thread is waiting on update from MS56XX and consequently
the main thread is waiting on an I2C/SPI transfer
Besides this starvation there's another one due to reuse of the timer
lock in order to pump values from the timer thread to the main thread. A
call to the update() method when we have a sample available would need
to wait on any other driver holding the timer lock.
Now there's a lock just to pass the new values from the bus thread to
the main thread with a very tiny critical region, not waiting on any
bus transfers and/or syscalls.