/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "AP_BattMonitor.h" #include "AP_BattMonitor_Backend.h" #include #include #include /* base class constructor. This incorporates initialisation as well. */ AP_BattMonitor_Backend::AP_BattMonitor_Backend(AP_BattMonitor &mon, AP_BattMonitor::BattMonitor_State &mon_state, AP_BattMonitor_Params ¶ms) : _mon(mon), _state(mon_state), _params(params) { } /// capacity_remaining_pct - returns the % battery capacity remaining (0 ~ 100) uint8_t AP_BattMonitor_Backend::capacity_remaining_pct() const { float mah_remaining = _params._pack_capacity - _state.consumed_mah; if ( _params._pack_capacity > 10 ) { // a very very small battery return MIN(MAX((100 * (mah_remaining) / _params._pack_capacity), 0), UINT8_MAX); } else { return 0; } } // update battery resistance estimate // faster rates of change of the current and voltage readings cause faster updates to the resistance estimate // the battery resistance is calculated by comparing the latest current and voltage readings to a low-pass filtered current and voltage // high current steps are integrated into the resistance estimate by varying the time constant of the resistance filter void AP_BattMonitor_Backend::update_resistance_estimate() { // return immediately if no current if (!has_current() || !is_positive(_state.current_amps)) { return; } // update maximum current seen since startup and protect against divide by zero _current_max_amps = MAX(_current_max_amps, _state.current_amps); float current_delta = _state.current_amps - _current_filt_amps; if (is_zero(current_delta)) { return; } // update reference voltage and current if (_state.voltage > _resistance_voltage_ref) { _resistance_voltage_ref = _state.voltage; _resistance_current_ref = _state.current_amps; } // calculate time since last update uint32_t now = AP_HAL::millis(); float loop_interval = (now - _resistance_timer_ms) / 1000.0f; _resistance_timer_ms = now; // estimate short-term resistance float filt_alpha = constrain_float(loop_interval/(loop_interval + AP_BATT_MONITOR_RES_EST_TC_1), 0.0f, 0.5f); float resistance_alpha = MIN(1, AP_BATT_MONITOR_RES_EST_TC_2*fabsf((_state.current_amps-_current_filt_amps)/_current_max_amps)); float resistance_estimate = -(_state.voltage-_voltage_filt)/current_delta; if (is_positive(resistance_estimate)) { _state.resistance = _state.resistance*(1-resistance_alpha) + resistance_estimate*resistance_alpha; } // calculate maximum resistance if ((_resistance_voltage_ref > _state.voltage) && (_state.current_amps > _resistance_current_ref)) { float resistance_max = (_resistance_voltage_ref - _state.voltage) / (_state.current_amps - _resistance_current_ref); _state.resistance = MIN(_state.resistance, resistance_max); } // update the filtered voltage and currents _voltage_filt = _voltage_filt*(1-filt_alpha) + _state.voltage*filt_alpha; _current_filt_amps = _current_filt_amps*(1-filt_alpha) + _state.current_amps*filt_alpha; // update estimated voltage without sag _state.voltage_resting_estimate = _state.voltage + _state.current_amps * _state.resistance; } float AP_BattMonitor_Backend::voltage_resting_estimate() const { // resting voltage should always be greater than or equal to the raw voltage return MAX(_state.voltage, _state.voltage_resting_estimate); } AP_BattMonitor::BatteryFailsafe AP_BattMonitor_Backend::update_failsafes(void) { const uint32_t now = AP_HAL::millis(); bool low_voltage, low_capacity, critical_voltage, critical_capacity; check_failsafe_types(low_voltage, low_capacity, critical_voltage, critical_capacity); if (critical_voltage) { // this is the first time our voltage has dropped below minimum so start timer if (_state.critical_voltage_start_ms == 0) { _state.critical_voltage_start_ms = now; } else if (_params._low_voltage_timeout > 0 && now - _state.critical_voltage_start_ms > uint32_t(_params._low_voltage_timeout)*1000U) { return AP_BattMonitor::BatteryFailsafe_Critical; } } else { // acceptable voltage so reset timer _state.critical_voltage_start_ms = 0; } if (critical_capacity) { return AP_BattMonitor::BatteryFailsafe_Critical; } if (low_voltage) { // this is the first time our voltage has dropped below minimum so start timer if (_state.low_voltage_start_ms == 0) { _state.low_voltage_start_ms = now; } else if (_params._low_voltage_timeout > 0 && now - _state.low_voltage_start_ms > uint32_t(_params._low_voltage_timeout)*1000U) { return AP_BattMonitor::BatteryFailsafe_Low; } } else { // acceptable voltage so reset timer _state.low_voltage_start_ms = 0; } if (low_capacity) { return AP_BattMonitor::BatteryFailsafe_Low; } // if we've gotten this far then battery is ok return AP_BattMonitor::BatteryFailsafe_None; } static bool update_check(size_t buflen, char *buffer, bool failed, const char *message) { if (failed) { strncpy(buffer, message, buflen); return false; } return true; } bool AP_BattMonitor_Backend::arming_checks(char * buffer, size_t buflen) const { bool low_voltage, low_capacity, critical_voltage, critical_capacity; check_failsafe_types(low_voltage, low_capacity, critical_voltage, critical_capacity); bool below_arming_voltage = is_positive(_params._arming_minimum_voltage) && (_state.voltage < _params._arming_minimum_voltage); bool below_arming_capacity = (_params._arming_minimum_capacity > 0) && ((_params._pack_capacity - _state.consumed_mah) < _params._arming_minimum_capacity); bool fs_capacity_inversion = is_positive(_params._critical_capacity) && is_positive(_params._low_capacity) && (_params._low_capacity < _params._critical_capacity); bool fs_voltage_inversion = is_positive(_params._critical_voltage) && is_positive(_params._low_voltage) && (_params._low_voltage < _params._critical_voltage); uint8_t cell_min_index=0; uint8_t cell_max_index=0; uint16_t dropout_voltage=0; bool fs_cells_dropout_voltage = cells_dropout_voltage_checks(cell_min_index,cell_max_index,dropout_voltage); bool result = update_check(buflen, buffer, low_voltage, "低电压故障保护");//low voltage failsafe result = result && update_check(buflen, buffer, low_capacity, "低电量故障保护");//low capacity failsafe result = result && update_check(buflen, buffer, critical_voltage, "临界电压故障保护");//critical voltage failsafe result = result && update_check(buflen, buffer, critical_capacity, "临界电量故障保护");//critical capacity failsafe result = result && update_check(buflen, buffer, below_arming_voltage, "低于最小解锁电压"); //below minimum arming voltage result = result && update_check(buflen, buffer, below_arming_capacity, "低于最小解锁电量");//below minimum arming capacity result = result && update_check(buflen, buffer, fs_capacity_inversion, "capacity failsafe critical > low");//capacity failsafe critical > low result = result && update_check(buflen, buffer, fs_voltage_inversion, "voltage failsafe critical > low");//voltage failsafe critical > low // char bat_message[60]; // snprintf(bat_message,60,"电池压差过大,%d号与%d号电芯,压差 %f V",cell_max_index,cell_min_index,dropout_voltage/1000.0); if (dropout_voltage == 0xeeee) { result = result && update_check(buflen, buffer, fs_cells_dropout_voltage, "电池电芯可能异常"); } else { result = result && update_check(buflen, buffer, fs_cells_dropout_voltage, "电池压差过大"); } return result; } void AP_BattMonitor_Backend::check_failsafe_types(bool &low_voltage, bool &low_capacity, bool &critical_voltage, bool &critical_capacity) const { // use voltage or sag compensated voltage float voltage_used; switch (_params.failsafe_voltage_source()) { case AP_BattMonitor_Params::BattMonitor_LowVoltageSource_Raw: default: voltage_used = _state.voltage; break; case AP_BattMonitor_Params::BattMonitor_LowVoltageSource_SagCompensated: voltage_used = voltage_resting_estimate(); break; } // check critical battery levels if ((voltage_used > 0) && (_params._critical_voltage > 0) && (voltage_used < _params._critical_voltage)) { critical_voltage = true; } else { critical_voltage = false; } // check capacity failsafe if current monitoring is enabled if (has_current() && (_params._critical_capacity > 0) && ((_params._pack_capacity - _state.consumed_mah) < _params._critical_capacity)) { critical_capacity = true; } else { critical_capacity = false; } if ((voltage_used > 0) && (_params._low_voltage > 0) && (voltage_used < _params._low_voltage)) { low_voltage = true; } else { low_voltage = false; } // check capacity if current monitoring is enabled if (has_current() && (_params._low_capacity > 0) && ((_params._pack_capacity - _state.consumed_mah) < _params._low_capacity)) { low_capacity = true; } else { low_capacity = false; } } /* default implementation for reset_remaining(). This sets consumed_wh and consumed_mah based on the given percentage. Use percentage=100 for a full battery */ bool AP_BattMonitor_Backend::reset_remaining(float percentage) { percentage = constrain_float(percentage, 0, 100); const float used_proportion = (100 - percentage) * 0.01; _state.consumed_mah = used_proportion * _params._pack_capacity; // without knowing the history we can't do consumed_wh // accurately. Best estimate is based on current voltage. This // will be good when resetting the battery to a value close to // full charge _state.consumed_wh = _state.consumed_mah * 1000 * _state.voltage; // reset failsafe state for this backend _state.failsafe = update_failsafes(); return true; } bool AP_BattMonitor_Backend::cells_dropout_voltage_checks(uint8_t &cell_min_index, uint8_t &cell_max_index, uint16_t &dropout_voltage) const { if (has_cell_voltages()&&(_params._arming_dropout_voltage>0)) { uint16_t cell_min = 65535; uint16_t cell_max = 0; for (int k = 0; k <_params._batt_cells_amount ; k++)//MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN { if (_state.cell_voltages.cells[k]!=65535) //TODO if valid cell valtage =0 { if (_state.cell_voltages.cells[k] < cell_min) { cell_min = _state.cell_voltages.cells[k]; cell_min_index = k + 1; } if (_state.cell_voltages.cells[k] > cell_max) { cell_max = _state.cell_voltages.cells[k]; cell_max_index = k + 1; } } } dropout_voltage = abs(cell_max - cell_min); if ((dropout_voltage/1000.0) >= _params._arming_dropout_voltage) //0.1v { return true; } if(cell_max ==0&&cell_min==0){ dropout_voltage= 0xeeee; // return true; } } return false; }