// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-

// Sensors are not available in HIL_MODE_ATTITUDE
#if HIL_MODE != HIL_MODE_ATTITUDE

static void ReadSCP1000(void) {}

#if CONFIG_SONAR == ENABLED
static void init_sonar(void)
{
    #if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
	    sonar.calculate_scaler(g.sonar_type, 3.3);
	#else
        sonar.calculate_scaler(g.sonar_type, 5.0);
	#endif
}
#endif

static void init_barometer(void)
{
    barometer.calibrate(mavlink_delay);
    ahrs.set_barometer(&barometer);
    gcs_send_text_P(SEVERITY_LOW, PSTR("barometer calibration complete"));
}

// return barometric altitude in centimeters
static int32_t read_barometer(void)
{
	barometer.read();
    return baro_filter.apply(barometer.get_altitude() * 100.0);
}


#endif // HIL_MODE != HIL_MODE_ATTITUDE

static void init_compass()
{
	compass.set_orientation(MAG_ORIENTATION);						// set compass's orientation on aircraft
	if (!compass.init() || !compass.read()) {
        // make sure we don't pass a broken compass to DCM
        Serial.println_P(PSTR("COMPASS INIT ERROR"));
        return;
    }
    ahrs.set_compass(&compass);
}

static void init_optflow()
{
#ifdef OPTFLOW_ENABLED
	if( optflow.init(false) == false ) {
	    g.optflow_enabled = false;
	    SendDebug("\nFailed to Init OptFlow ");
	}
	optflow.set_orientation(OPTFLOW_ORIENTATION);			// set optical flow sensor's orientation on aircraft
	optflow.set_frame_rate(2000);							// set minimum update rate (which should lead to maximum low light performance
	optflow.set_resolution(OPTFLOW_RESOLUTION);				// set optical flow sensor's resolution
	optflow.set_field_of_view(OPTFLOW_FOV);					// set optical flow sensor's field of view
	// setup timed read of sensor
	//timer_scheduler.register_process(&AP_OpticalFlow::read);
#endif
}

static void read_battery(void)
{

	if(g.battery_monitoring == 0){
		battery_voltage1 = 0;
		return;
	}

    if(g.battery_monitoring == 3 || g.battery_monitoring == 4) {
        static AP_AnalogSource_Arduino bat_pin(BATTERY_PIN_1);
	battery_voltage1 = BATTERY_VOLTAGE(bat_pin.read_average());
    }
	if(g.battery_monitoring == 4) {
        static AP_AnalogSource_Arduino current_pin(CURRENT_PIN_1);
		current_amps1	 = CURRENT_AMPS(current_pin.read_average());
		current_total1	 += current_amps1 * 0.02778;	// called at 100ms on average, .0002778 is 1/3600 (conversion to hours)
	}

	#if BATTERY_EVENT == ENABLED
	//if(battery_voltage < g.low_voltage)
	//	low_battery_event();

	if((battery_voltage1 < g.low_voltage) || (g.battery_monitoring == 4 && current_total1 > g.pack_capacity)){
		low_battery_event();

		#if COPTER_LEDS == ENABLED
		if ( bitRead(g.copter_leds_mode, 3) ){	// Only Activate if a battery is connected to avoid alarm on USB only
			if (battery_voltage1 > 1){
				piezo_on();
			}else{
				piezo_off();
			}
		}
		

	}else if ( bitRead(g.copter_leds_mode, 3) ){
		piezo_off();
		#endif // COPTER_LEDS
	}
	#endif //BATTERY_EVENT
}

//v: 10.9453, a: 17.4023, mah: 8.2