// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include "AP_Terrain.h" #if HAVE_AP_TERRAIN #include #include #include #include #include #include #include #define TERRAIN_DEBUG 0 extern const AP_HAL::HAL& hal; // table of user settable parameters const AP_Param::GroupInfo AP_Terrain::var_info[] PROGMEM = { // @Param: ENABLE // @DisplayName: Terrain following enable // @Description: enable terrain following // @Values: 0:Disable,1:Enable AP_GROUPINFO("ENABLE", 0, AP_Terrain, enable, 0), // @Param: SPACING // @DisplayName: Terrain grid spacing // @Description: distance between terrain grid points in meters // @Units: meters // @Increment: 1 AP_GROUPINFO("SPACING", 1, AP_Terrain, grid_spacing, 100), AP_GROUPEND }; // constructor AP_Terrain::AP_Terrain(AP_AHRS &_ahrs) : ahrs(_ahrs), last_request_time_ms(0), disk_io_state(DiskIoIdle), fd(-1), timer_setup(false), file_lat_degrees(0), file_lon_degrees(0), io_failure(false), directory_created(false) { AP_Param::setup_object_defaults(this, var_info); } #if TERRAIN_DEBUG #define ASSERT_RANGE(v,minv,maxv) assert((v)<=(maxv)&&(v)>=(minv)) #else #define ASSERT_RANGE(v,minv,maxv) #endif /* calculate bit number in grid_block bitmap. This corresponds to a bit representing a 4x4 mavlink transmitted block */ uint8_t AP_Terrain::grid_bitnum(uint8_t idx_x, uint8_t idx_y) { ASSERT_RANGE(idx_x,0,27); ASSERT_RANGE(idx_y,0,31); uint8_t subgrid_x = idx_x / TERRAIN_GRID_MAVLINK_SIZE; uint8_t subgrid_y = idx_y / TERRAIN_GRID_MAVLINK_SIZE; ASSERT_RANGE(subgrid_x,0,TERRAIN_GRID_BLOCK_MUL_X-1); ASSERT_RANGE(subgrid_y,0,TERRAIN_GRID_BLOCK_MUL_Y-1); return subgrid_y + TERRAIN_GRID_BLOCK_MUL_Y*subgrid_x; } /* given a grid_info check that a given idx_x/idx_y is available (set in the bitmap) */ bool AP_Terrain::check_bitmap(const struct grid_block &grid, uint8_t idx_x, uint8_t idx_y) { uint8_t bitnum = grid_bitnum(idx_x, idx_y); return (grid.bitmap & (((uint64_t)1U)<millis(); return cache[i]; } if (cache[i].last_access_ms < cache[oldest_i].last_access_ms) { oldest_i = i; } } // Not found. Use the oldest grid and make it this grid, // initially unpopulated struct grid_cache &grid = cache[oldest_i]; memset(&grid, 0, sizeof(grid)); grid.grid.lat = info.grid_lat; grid.grid.lon = info.grid_lon; grid.grid.spacing = grid_spacing; grid.grid.grid_idx_x = info.grid_idx_x; grid.grid.grid_idx_y = info.grid_idx_y; grid.grid.lat_degrees = info.lat_degrees; grid.grid.lon_degrees = info.lon_degrees; grid.grid.version = TERRAIN_GRID_FORMAT_VERSION; grid.last_access_ms = hal.scheduler->millis(); // mark as waiting for disk read grid.state = GRID_CACHE_DISKWAIT; return grid; } /* return terrain height in meters above average sea level (WGS84) for a given position */ bool AP_Terrain::height_amsl(const Location &loc, float &height) { if (!enable) { return false; } // quick access for home altitude if (loc.lat == home_loc.lat && loc.lng == home_loc.lng) { height = home_height; return true; } struct grid_info info; calculate_grid_info(loc, info); // find the grid const struct grid_block &grid = find_grid(info).grid; /* note that we rely on the one square overlap to ensure these calculations don't go past the end of the arrays */ ASSERT_RANGE(info.idx_x, 0, TERRAIN_GRID_BLOCK_SIZE_X-2); ASSERT_RANGE(info.idx_y, 0, TERRAIN_GRID_BLOCK_SIZE_Y-2); // check we have all 4 required heights if (!check_bitmap(grid, info.idx_x, info.idx_y) || !check_bitmap(grid, info.idx_x, info.idx_y+1) || !check_bitmap(grid, info.idx_x+1, info.idx_y) || !check_bitmap(grid, info.idx_x+1, info.idx_y+1)) { return false; } // hXY are the heights of the 4 surrounding grid points int16_t h00, h01, h10, h11; h00 = grid.height[info.idx_x+0][info.idx_y+0]; h01 = grid.height[info.idx_x+0][info.idx_y+1]; h10 = grid.height[info.idx_x+1][info.idx_y+0]; h11 = grid.height[info.idx_x+1][info.idx_y+1]; float avg1 = (1.0f-info.frac_x) * h00 + info.frac_x * h10; float avg2 = (1.0f-info.frac_x) * h01 + info.frac_x * h11; float avg = (1.0f-info.frac_y) * avg1 + info.frac_y * avg2; height = avg; if (loc.lat == ahrs.get_home().lat && loc.lng == ahrs.get_home().lng) { // remember home altitude as a special case home_height = height; home_loc = loc; } return true; } /* request any missing 4x4 grids from a block, given a grid_cache */ bool AP_Terrain::request_missing(mavlink_channel_t chan, struct grid_cache &gcache) { struct grid_block &grid = gcache.grid; // see if we are waiting for disk read if (gcache.state == GRID_CACHE_DISKWAIT) { // don't request data from the GCS till we know its not on disk return false; } // see if it is fully populated if ((grid.bitmap & bitmap_mask) == bitmap_mask) { // it is fully populated, nothing to do return false; } /* ask the GCS to send a set of 4x4 grids */ mavlink_msg_terrain_request_send(chan, grid.lat, grid.lon, grid_spacing, bitmap_mask & ~grid.bitmap); last_request_time_ms = hal.scheduler->millis(); return true; } /* request any missing 4x4 grids from a block */ bool AP_Terrain::request_missing(mavlink_channel_t chan, const struct grid_info &info) { // find the grid struct grid_cache &gcache = find_grid(info); return request_missing(chan, gcache); } /* send any pending terrain request to the GCS */ void AP_Terrain::send_request(mavlink_channel_t chan) { if (enable == 0) { // not enabled return; } // see if we need to schedule some disk IO schedule_disk_io(); // did we request recently? if (hal.scheduler->millis() - last_request_time_ms < 2000) { // too soon to request again return; } Location loc; if (!ahrs.get_position(loc)) { // we don't know where we are return; } // request any missing 4x4 blocks in the current grid struct grid_info info; calculate_grid_info(loc, info); if (request_missing(chan, info)) { return; } // also request a larger set of up to 9 grids for (int8_t x=-1; x<=1; x++) { for (int8_t y=-1; y<=1; y++) { Location loc2 = loc; location_offset(loc2, x*TERRAIN_GRID_BLOCK_SIZE_X*0.7f*grid_spacing, y*TERRAIN_GRID_BLOCK_SIZE_Y*0.7f*grid_spacing); struct grid_info info2; calculate_grid_info(loc2, info2); if (request_missing(chan, info2)) { return; } } } // check cache blocks that may have been setup by a TERRAIN_CHECK for (uint16_t i=0; i= GRID_CACHE_VALID) { if (request_missing(chan, cache[i])) { return; } } } // request the current loc last to ensure it has highest last // access time if (request_missing(chan, info)) { return; } // nothing to request, send a terrain report send_terrain_report(chan, loc); } /* count bits in a uint64_t */ uint8_t AP_Terrain::bitcount64(uint64_t b) { return __builtin_popcount((unsigned)(b&0xFFFFFFFF)) + __builtin_popcount((unsigned)(b>>32)); } /* get some statistics for TERRAIN_REPORT */ void AP_Terrain::get_statistics(uint16_t &pending, uint16_t &loaded) { pending = 0; loaded = 0; for (uint16_t i=0; imsgid == MAVLINK_MSG_ID_TERRAIN_DATA) { handle_terrain_data(msg); } else if (msg->msgid == MAVLINK_MSG_ID_TERRAIN_CHECK) { handle_terrain_check(chan, msg); } } /* send a TERRAIN_REPORT for a location */ void AP_Terrain::send_terrain_report(mavlink_channel_t chan, const Location &loc) { float height = 0; uint16_t spacing = 0; if (height_amsl(loc, height)) { spacing = grid_spacing; } uint16_t pending, loaded; get_statistics(pending, loaded); if (comm_get_txspace(chan) >= MAVLINK_NUM_NON_PAYLOAD_BYTES + MAVLINK_MSG_ID_TERRAIN_REPORT_LEN) { mavlink_msg_terrain_report_send(chan, loc.lat, loc.lng, spacing, height, pending, loaded); } } /* handle TERRAIN_CHECK messages from GCS */ void AP_Terrain::handle_terrain_check(mavlink_channel_t chan, mavlink_message_t *msg) { mavlink_terrain_check_t packet; mavlink_msg_terrain_check_decode(msg, &packet); Location loc; loc.lat = packet.lat; loc.lng = packet.lon; send_terrain_report(chan, loc); } /* handle TERRAIN_DATA messages from GCS */ void AP_Terrain::handle_terrain_data(mavlink_message_t *msg) { mavlink_terrain_data_t packet; mavlink_msg_terrain_data_decode(msg, &packet); uint16_t i; for (i=0; iprintf("Filled bit %u idx_x=%u idx_y=%u\n", (unsigned)packet.gridbit, (unsigned)idx_x, (unsigned)idx_y); if (gcache.grid.bitmap == bitmap_mask) { hal.console->printf("--lat=%12.7f --lon=%12.7f %u\n", grid.lat*1.0e-7f, grid.lon*1.0e-7f, grid.height[0][0]); Location loc2; loc2.lat = grid.lat; loc2.lng = grid.lon; location_offset(loc2, 28*grid_spacing, 32*grid_spacing); hal.console->printf("--lat=%12.7f --lon=%12.7f %u\n", loc2.lat*1.0e-7f, loc2.lng*1.0e-7f, grid.height[27][31]); } #endif // see if we need to schedule some disk IO update(); } /* find cache index of disk_block */ int16_t AP_Terrain::find_io_idx(enum GridCacheState state) { // try first with given state for (uint16_t i=0; iregister_io_process(AP_HAL_MEMBERPROC(&AP_Terrain::io_timer)); } switch (disk_io_state) { case DiskIoIdle: // look for a block that needs reading or writing check_disk_read(); if (disk_io_state == DiskIoIdle) { // still idle, check for writes check_disk_write(); } break; case DiskIoDoneRead: { // a read has completed int16_t cache_idx = find_io_idx(GRID_CACHE_DISKWAIT); if (cache_idx != -1) { if (disk_block.block.bitmap != 0) { // when bitmap is zero we read an empty block cache[cache_idx].grid = disk_block.block; } cache[cache_idx].state = GRID_CACHE_VALID; cache[cache_idx].last_access_ms = hal.scheduler->millis(); } disk_io_state = DiskIoIdle; break; } case DiskIoDoneWrite: { // a write has completed int16_t cache_idx = find_io_idx(GRID_CACHE_DIRTY); if (cache_idx != -1) { if (cache[cache_idx].grid.bitmap == disk_block.block.bitmap) { // only mark valid if more grids haven't been added cache[cache_idx].state = GRID_CACHE_VALID; } } disk_io_state = DiskIoIdle; break; } case DiskIoWaitWrite: case DiskIoWaitRead: // waiting for io_timer() break; } } /* 1Hz update function. This is here to ensure progress is made on disk IO even if no MAVLink send_request() operations are called for a while. */ void AP_Terrain::update(void) { // just schedule any needed disk IO schedule_disk_io(); } /* get CRC for a block */ uint16_t AP_Terrain::get_block_crc(struct grid_block &block) { uint16_t saved_crc = block.crc; block.crc = 0; uint16_t ret = crc16_ccitt((const uint8_t *)&block, sizeof(block), 0); block.crc = saved_crc; return ret; } /******************************************************** All the functions below this point run in the IO timer context, which is a separate thread. The code uses the state machine controlled by disk_io_state to manage who has access to the structures and to prevent race conditions. The IO timer context owns the data when disk_io_state is DiskIoWaitWrite or DiskIoWaitRead. The main thread owns the data when disk_io_state is DiskIoIdle, DiskIoDoneWrite or DiskIoDoneRead All file operations are done by the IO thread. *********************************************************/ /* open the current degree file */ void AP_Terrain::open_file(void) { struct grid_block &block = disk_block.block; if (fd != -1 && block.lat_degrees == file_lat_degrees && block.lon_degrees == file_lon_degrees) { // already open on right file return; } // build the pathname to the degree file char path[] = HAL_BOARD_TERRAIN_DIRECTORY "/NxxExxx.DAT"; char *p = &path[strlen(HAL_BOARD_TERRAIN_DIRECTORY)+1]; snprintf(p, 12, "%c%02u%c%03u.DAT", block.lat_degrees<0?'S':'N', abs(block.lat_degrees), block.lon_degrees<0?'W':'E', abs(block.lon_degrees)); // create directory if need be if (!directory_created) { mkdir(HAL_BOARD_TERRAIN_DIRECTORY, 0755); directory_created = true; } if (fd != -1) { ::close(fd); } fd = ::open(path, O_RDWR|O_CREAT, 0644); if (fd == -1) { #if TERRAIN_DEBUG hal.console->printf("Open %s failed - %s\n", path, strerror(errno)); #endif io_failure = true; return; } file_lat_degrees = block.lat_degrees; file_lon_degrees = block.lon_degrees; } /* seek to the right offset for disk_block */ void AP_Terrain::seek_offset(void) { struct grid_block &block = disk_block.block; // work out how many longitude blocks there are at this latitude Location loc1, loc2; loc1.lat = block.lat_degrees*10*1000*1000L; loc1.lng = block.lon_degrees*10*1000*1000L; loc2.lat = block.lat_degrees*10*1000*1000L; loc2.lng = (block.lon_degrees+1)*10*1000*1000L; // shift another two blocks east to ensure room is available location_offset(loc2, 0, 2*grid_spacing*TERRAIN_GRID_BLOCK_SIZE_Y); Vector2f offset = location_diff(loc1, loc2); uint16_t east_blocks = offset.y / (grid_spacing*TERRAIN_GRID_BLOCK_SIZE_Y); uint32_t file_offset = (east_blocks * block.grid_idx_x + block.grid_idx_y) * sizeof(union grid_io_block); if (::lseek(fd, file_offset, SEEK_SET) != file_offset) { #if TERRAIN_DEBUG hal.console->printf("Seek %lu failed - %s\n", (unsigned long)file_offset, strerror(errno)); #endif ::close(fd); fd = -1; io_failure = true; } } /* write out disk_block */ void AP_Terrain::write_block(void) { seek_offset(); if (io_failure) { return; } disk_block.block.crc = get_block_crc(disk_block.block); ssize_t ret = ::write(fd, &disk_block, sizeof(disk_block)); if (ret != sizeof(disk_block)) { #if TERRAIN_DEBUG hal.console->printf("write failed - %s\n", strerror(errno)); #endif ::close(fd); fd = -1; io_failure = true; } else { ::fsync(fd); #if TERRAIN_DEBUG printf("wrote block at %ld %ld ret=%d mask=%07llx\n", (long)disk_block.block.lat, (long)disk_block.block.lon, (int)ret, (unsigned long long)disk_block.block.bitmap); #endif } disk_io_state = DiskIoDoneWrite; } /* read in disk_block */ void AP_Terrain::read_block(void) { seek_offset(); if (io_failure) { return; } int32_t lat = disk_block.block.lat; int32_t lon = disk_block.block.lon; ssize_t ret = ::read(fd, &disk_block, sizeof(disk_block)); if (ret != sizeof(disk_block) || disk_block.block.lat != lat || disk_block.block.lon != lon || disk_block.block.bitmap == 0 || disk_block.block.spacing != grid_spacing || disk_block.block.version != TERRAIN_GRID_FORMAT_VERSION || disk_block.block.crc != get_block_crc(disk_block.block)) { #if TERRAIN_DEBUG printf("read empty block at %ld %ld ret=%d\n", (long)lat, (long)lon, (int)ret); #endif // a short read or bad data is not an IO failure, just a // missing block on disk memset(&disk_block, 0, sizeof(disk_block)); disk_block.block.lat = lat; disk_block.block.lon = lon; disk_block.block.bitmap = 0; } else { #if TERRAIN_DEBUG printf("read block at %ld %ld ret=%d mask=%07llx\n", (long)lat, (long)lon, (int)ret, (unsigned long long)disk_block.block.bitmap); #endif } disk_io_state = DiskIoDoneRead; } /* timer called to do disk IO */ void AP_Terrain::io_timer(void) { if (io_failure) { // don't keep trying io, so we don't thrash the filesystem // code while flying return; } switch (disk_io_state) { case DiskIoIdle: case DiskIoDoneRead: case DiskIoDoneWrite: // nothing to do break; case DiskIoWaitWrite: // need to write out the block open_file(); if (fd == -1) { return; } write_block(); break; case DiskIoWaitRead: // need to read in the block open_file(); if (fd == -1) { return; } read_block(); break; } } #endif // HAVE_AP_TERRAIN