/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = { // index 0 was used for the old orientation matrix // @Param: SPEED // @DisplayName: Speed in cm/s to travel between waypoints // @Description: The desired horizontal speed in cm/s while travelling between waypoints // @Range: 0 1000 // @Increment: 50 AP_GROUPINFO("SPEED", 0, AC_WPNav, _speed_cms, WP_SPEED), AP_GROUPEND }; // Default constructor. // Note that the Vector/Matrix constructors already implicitly zero // their values. // AC_WPNav::AC_WPNav(AP_InertialNav* inav, APM_PI* pid_pos_lat, APM_PI* pid_pos_lon, AC_PID* pid_rate_lat, AC_PID* pid_rate_lon) : _inav(inav), _pid_pos_lat(pid_pos_lat), _pid_pos_lon(pid_pos_lon), _pid_rate_lat(pid_rate_lat), _pid_rate_lon(pid_rate_lon), _speedz_cms(MAX_CLIMB_VELOCITY), _lean_angle_max(MAX_LEAN_ANGLE) { AP_Param::setup_object_defaults(this, var_info); } /// /// simple loiter controller /// /// set_loiter_target - set initial loiter target based on current position and velocity void AC_WPNav::set_loiter_target(const Vector3f& position, const Vector3f& velocity) { float linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt. float linear_velocity; // the velocity we swap between linear and sqrt. float vel_total; float target_dist; // avoid divide by zero if( _pid_pos_lat->kP() <= 0.1 ) { set_loiter_target(position); return; } // calculate point at which velocity switches from linear to sqrt linear_velocity = MAX_LOITER_POS_ACCEL/_pid_pos_lat->kP(); // calculate total current velocity vel_total = safe_sqrt(velocity.x*velocity.x + velocity.y*velocity.y); // calculate distance within which we can stop if (vel_total < linear_velocity) { target_dist = vel_total/_pid_pos_lat->kP(); } else { linear_distance = MAX_LOITER_POS_ACCEL/(2*_pid_pos_lat->kP()*_pid_pos_lat->kP()); target_dist = linear_distance + (vel_total*vel_total)/(2*MAX_LOITER_POS_ACCEL); } target_dist = constrain(target_dist, 0, MAX_LOITER_OVERSHOOT); _target.x = position.x + (target_dist * velocity.x / vel_total); _target.y = position.y + (target_dist * velocity.y / vel_total); } /// move_loiter_target - move loiter target by velocity provided in front/right directions in cm/s void AC_WPNav::move_loiter_target(float vel_forward_cms, float vel_right_cms, float dt) { _pilot_vel_forward_cms = vel_forward_cms; _pilot_vel_right_cms = vel_right_cms; } /// translate_loiter_target_movements - consumes adjustments created by move_loiter_target void AC_WPNav::translate_loiter_target_movements(float nav_dt) { Vector2f target_vel_adj; // make 2d vector? float vel_delta_total; float vel_max; float vel_total; // range check nav_dt if( nav_dt < 0 ) { return; } // rotate pilot input to lat/lon frame target_vel_adj.x = (_pilot_vel_forward_cms*_cos_yaw - _pilot_vel_right_cms*_sin_yaw) - _target_vel.x; target_vel_adj.y = (_pilot_vel_forward_cms*_sin_yaw + _pilot_vel_right_cms*_cos_yaw) - _target_vel.y; // constrain the velocity vector and scale if necessary vel_delta_total = safe_sqrt(target_vel_adj.x*target_vel_adj.x + target_vel_adj.y*target_vel_adj.y); vel_max = MAX_LOITER_POS_ACCEL*nav_dt; if( vel_delta_total > vel_max) { target_vel_adj.x = vel_max * target_vel_adj.x/vel_delta_total; target_vel_adj.y = vel_max * target_vel_adj.y/vel_delta_total; } // add desired change in velocity to current target velocity _target_vel.x += target_vel_adj.x; _target_vel.y += target_vel_adj.y; // constrain the velocity vector and scale if necessary vel_total = safe_sqrt(_target_vel.x*_target_vel.x + _target_vel.y*_target_vel.y); if( vel_total > MAX_LOITER_POS_VEL_VELOCITY ) { _target_vel.x = MAX_LOITER_POS_VEL_VELOCITY * _target_vel.x/vel_total; _target_vel.y = MAX_LOITER_POS_VEL_VELOCITY * _target_vel.y/vel_total; } // update target position _target.x += _target_vel.x * nav_dt; _target.y += _target_vel.y * nav_dt; } /// get_distance_to_target - get horizontal distance to loiter target in cm float AC_WPNav::get_distance_to_target() { return _distance_to_target; } /// get_bearing_to_target - get bearing to loiter target in centi-degrees int32_t AC_WPNav::get_bearing_to_target() { return get_bearing_cd(_inav->get_position(), _target); } /// update_loiter - run the loiter controller - should be called at 10hz void AC_WPNav::update_loiter() { uint32_t now = hal.scheduler->millis(); float dt = (now - _last_update) / 1000.0f; _last_update = now; // catch if we've just been started if( dt >= 1.0 ) { dt = 0.0; reset_I(); _target_vel.x = 0; _target_vel.y = 0; } // translate any adjustments from pilot to loiter target translate_loiter_target_movements(dt); // run loiter position controller get_loiter_pos_lat_lon(_target.x, _target.y, dt); } /// /// waypoint navigation /// /// set_destination - set destination using cm from home void AC_WPNav::set_destination(const Vector3f& destination) { set_origin_and_destination(_inav->get_position(), destination); } /// set_origin_and_destination - set origin and destination using lat/lon coordinates void AC_WPNav::set_origin_and_destination(const Vector3f& origin, const Vector3f& destination) { _origin = origin; _destination = destination; _pos_delta_unit = _destination - _origin; _track_length = _pos_delta_unit.length(); _pos_delta_unit = _pos_delta_unit/_track_length; _hoz_track_ratio = _track_length / sqrt(_pos_delta_unit.x*_pos_delta_unit.x + _pos_delta_unit.y*_pos_delta_unit.y); _vert_track_ratio = _track_length / _pos_delta_unit.z; _track_desired = 0; } /// advance_target_along_track - move target location along track from origin to destination void AC_WPNav::advance_target_along_track(float velocity_cms, float dt) { float cross_track_dist; float track_covered; float track_desired_max; float alt_error; // get current location Vector3f curr = _inav->get_position(); // limit velocity to maximum possible velocity_cms = min(velocity_cms, _speed_cms) * _hoz_track_ratio; velocity_cms = min(velocity_cms, _speedz_cms * _vert_track_ratio); // check for zero length segment if( _pos_delta_unit.x == 0 && _pos_delta_unit.y == 0 ) { _target = _destination; return; } track_covered = (curr.x-_origin.x) * _pos_delta_unit.x + (curr.y-_origin.y) * _pos_delta_unit.y + (curr.z-_origin.z) * _pos_delta_unit.z; cross_track_dist = -(curr.x-_origin.x) * _pos_delta_unit.y + (curr.y-_origin.y) * _pos_delta_unit.x; alt_error = fabsf(_origin.z + _pos_delta_unit.z * track_covered - curr.z); // maximum distance along the track that we will allow (stops target point from getting too far from the current position) track_desired_max = track_covered + min( safe_sqrt(WPINAV_MAX_POS_ERROR*WPINAV_MAX_POS_ERROR - cross_track_dist*cross_track_dist) * _hoz_track_ratio, (750-alt_error) * _vert_track_ratio); // advance the current target _track_desired += velocity_cms * dt; // constrain the target from moving too far if( _track_desired > track_desired_max ) { _track_desired = track_desired_max; } if( _track_desired > _track_length ) { _track_desired = _track_length; } // recalculate the desired position _target.x = _origin.x + _pos_delta_unit.x * _track_desired; _target.y = _origin.y + _pos_delta_unit.y * _track_desired; _target.z = _origin.z + _pos_delta_unit.z * _track_desired; } /// get_distance_to_destination - get horizontal distance to destination in cm float AC_WPNav::get_distance_to_destination() { // get current location Vector3f curr = _inav->get_position(); return pythagorous2(_destination.x-curr.x,_destination.y-curr.y); } /// get_bearing_to_destination - get bearing to next waypoint in centi-degrees int32_t AC_WPNav::get_bearing_to_destination() { return get_bearing_cd(_inav->get_position(), _destination); } /// update_wpnav - run the wp controller - should be called at 10hz void AC_WPNav::update_wpnav() { uint32_t now = hal.scheduler->millis(); float dt = (now - _last_update) / 1000.0f; _last_update = now; // catch if we've just been started if( dt >= 1.0 ) { dt = 0.0; reset_I(); }else{ // advance the target if necessary advance_target_along_track(_speed_cms, dt); } // run loiter position controller get_loiter_pos_lat_lon(_target.x, _target.y, dt); } /// /// shared methods /// // get_loiter_pos_lat_lon - loiter position controller // converts desired position provided as distance from home in lat/lon directions to desired velocity void AC_WPNav::get_loiter_pos_lat_lon(int32_t target_lat_from_home, int32_t target_lon_from_home, float dt) { float dist_error_lat; int32_t desired_vel_lat; float dist_error_lon; int32_t desired_vel_lon; int32_t dist_error_total; int16_t vel_sqrt; int32_t vel_total; int16_t linear_distance; // the distace we swap between linear and sqrt. // calculate distance error dist_error_lat = target_lat_from_home - _inav->get_latitude_diff(); dist_error_lon = target_lon_from_home - _inav->get_longitude_diff(); linear_distance = MAX_LOITER_POS_ACCEL/(2*_pid_pos_lat->kP()*_pid_pos_lat->kP()); _distance_to_target = linear_distance; // for reporting purposes dist_error_total = safe_sqrt(dist_error_lat*dist_error_lat + dist_error_lon*dist_error_lon); if( dist_error_total > 2*linear_distance ) { vel_sqrt = constrain(safe_sqrt(2*MAX_LOITER_POS_ACCEL*(dist_error_total-linear_distance)),0,1000); desired_vel_lat = vel_sqrt * dist_error_lat/dist_error_total; desired_vel_lon = vel_sqrt * dist_error_lon/dist_error_total; }else{ desired_vel_lat = _pid_pos_lat->get_p(dist_error_lat); desired_vel_lon = _pid_pos_lon->get_p(dist_error_lon); } vel_total = safe_sqrt(desired_vel_lat*desired_vel_lat + desired_vel_lon*desired_vel_lon); if( vel_total > MAX_LOITER_POS_VELOCITY ) { desired_vel_lat = MAX_LOITER_POS_VELOCITY * desired_vel_lat/vel_total; desired_vel_lon = MAX_LOITER_POS_VELOCITY * desired_vel_lon/vel_total; } get_loiter_vel_lat_lon(desired_vel_lat, desired_vel_lon, dt); } // get_loiter_vel_lat_lon - loiter velocity controller // converts desired velocities in lat/lon frame to accelerations in lat/lon frame void AC_WPNav::get_loiter_vel_lat_lon(float vel_lat, float vel_lon, float dt) { Vector3f vel_curr = _inav->get_velocity(); // current velocity in cm/s Vector3f vel_error; // The velocity error in cm/s. Vector2f desired_accel; // the resulting desired acceleration float accel_total; // total acceleration in cm/s/s // reset last velocity if this controller has just been engaged or dt is zero if( dt == 0.0 ) { desired_accel.x = 0; desired_accel.y = 0; } else { // feed forward desired acceleration calculation desired_accel.x = (vel_lat - _vel_last.x)/dt; desired_accel.y = (vel_lon - _vel_last.y)/dt; } // store this iteration's velocities for the next iteration _vel_last.x = vel_lat; _vel_last.y = vel_lon; // calculate velocity error vel_error.x = vel_lat - vel_curr.x; vel_error.y = vel_lon - vel_curr.y; // combine feed foward accel with PID outpu from velocity error desired_accel.x += _pid_rate_lat->get_pid(vel_error.x, dt); desired_accel.y += _pid_rate_lon->get_pid(vel_error.y, dt); // scale desired acceleration if it's beyond acceptable limit accel_total = safe_sqrt(desired_accel.x*desired_accel.x + desired_accel.y*desired_accel.y); if( accel_total > MAX_LOITER_VEL_ACCEL ) { desired_accel.x = MAX_LOITER_VEL_ACCEL * desired_accel.x/accel_total; desired_accel.y = MAX_LOITER_VEL_ACCEL * desired_accel.y/accel_total; } // call accel based controller with desired acceleration get_loiter_accel_lat_lon(desired_accel.x, desired_accel.y); } // get_loiter_accel_lat_lon - loiter acceration controller // converts desired accelerations provided in lat/lon frame to roll/pitch angles void AC_WPNav::get_loiter_accel_lat_lon(int16_t accel_lat, int16_t accel_lon) { float z_accel_meas = -AP_INTERTIALNAV_GRAVITY * 100; // gravity in cm/s/s float accel_forward; float accel_right; // To-Do: add 1hz filter to accel_lat, accel_lon // rotate accelerations into body forward-right frame accel_forward = accel_lat*_cos_yaw + accel_lon*_sin_yaw; accel_right = -accel_lat*_sin_yaw + accel_lon*_cos_yaw; // update angle targets that will be passed to stabilize controller _desired_roll = constrain((accel_right/(-z_accel_meas))*(18000/M_PI), -_lean_angle_max, _lean_angle_max); _desired_pitch = constrain((-accel_forward/(-z_accel_meas*_cos_roll))*(18000/M_PI), -_lean_angle_max, _lean_angle_max); } // get_bearing_cd - return bearing in centi-degrees between two positions // To-Do: move this to math library float AC_WPNav::get_bearing_cd(const Vector3f origin, const Vector3f destination) { float bearing = 9000 + atan2f(-(destination.x-origin.x), destination.y-origin.y) * 5729.57795f; if (bearing < 0) { bearing += 36000; } return bearing; } /// reset_I - clears I terms from loiter PID controller void AC_WPNav::reset_I() { _pid_pos_lon->reset_I(); _pid_pos_lat->reset_I(); _pid_rate_lon->reset_I(); _pid_rate_lat->reset_I(); // set last velocity to current velocity _vel_last = _inav->get_velocity(); }