/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "AP_Proximity_NanaRadar_MR72.h" #include #include #include #include #include extern const AP_HAL::HAL& hal; /* The constructor also initialises the proximity sensor. Note that this constructor is not called until detect() returns true, so we already know that we should setup the proximity sensor */ AP_Proximity_NanaRadar_MR72::AP_Proximity_NanaRadar_MR72( AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state) : AP_Proximity_Backend(_frontend, _state) { const AP_SerialManager &serial_manager = AP::serialmanager(); uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0); if (uart != nullptr) { uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Lidar360, 0)); } } // detect if a TeraRanger Tower proximity sensor is connected by looking for a configured serial port bool AP_Proximity_NanaRadar_MR72::detect() { AP_HAL::UARTDriver *uart = nullptr; uart = AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0); return uart != nullptr; } // update the state of the sensor void AP_Proximity_NanaRadar_MR72::update(void) { if (uart == nullptr) { return; } // process incoming messages read_sensor_data(); // check for timeout and set health status if ((_last_distance_received_ms == 0) || (AP_HAL::millis() - _last_distance_received_ms > PROXIMITY_TRTOWER_TIMEOUT_MS)) { set_status(AP_Proximity::Status::NoData); } else { set_status(AP_Proximity::Status::Good); } } // get maximum and minimum distances (in meters) of primary sensor float AP_Proximity_NanaRadar_MR72::distance_max() const { return 40.0f; } float AP_Proximity_NanaRadar_MR72::distance_min() const { return 0.20f; } // check for replies from sensor, returns true if at least one message was processed bool AP_Proximity_NanaRadar_MR72::read_sensor_data() { if (uart == nullptr) { return false; } uint16_t message_count = 0; int16_t nbytes = uart->available(); while (nbytes-- > 0) { // uint8_t c = uart->read(); // gcs().send_text(MAV_SEVERITY_INFO, "getc 0x%02x",c); if (uart->read() == Head1) { //判断数据包帧头0x54 buffer[0] = Head1; // gcs().send_text(MAV_SEVERITY_INFO, "getc 0x%02x",buffer[0]); if (uart->read() == Head2) { //判断数据包帧头0X48 buffer[1] = Head2; // gcs().send_text(MAV_SEVERITY_INFO, "getc 0x%02x",buffer[1]); for (int i = 2; i < 19; i++) { //存储数据到数组 buffer[i] = uart->read(); // gcs().send_text(MAV_SEVERITY_INFO, "%02d: 0x%02x",i,buffer[i]); } CheckSum = crc_crc8(buffer,18); // gcs().send_text(MAV_SEVERITY_INFO, "crc 0x%02x, rec:0x%02x",CheckSum,buffer[18]); if (buffer[18] == CheckSum) { //按照协议对收到的数据进行校验 update_sector_data(0, UINT16_VALUE(buffer[2], buffer[3])); // d1 update_sector_data(45, UINT16_VALUE(buffer[4], buffer[5])); // d8 update_sector_data(90, UINT16_VALUE(buffer[6], buffer[7])); // d7 update_sector_data(135, UINT16_VALUE(buffer[8], buffer[9])); // d6 update_sector_data(180, UINT16_VALUE(buffer[10], buffer[11])); // d5 update_sector_data(225, UINT16_VALUE(buffer[12], buffer[13])); // d4 update_sector_data(270, UINT16_VALUE(buffer[14], buffer[15])); // d3 update_sector_data(315, UINT16_VALUE(buffer[16], buffer[17])); // d2 message_count++; } } } } return (message_count > 0); } // process reply void AP_Proximity_NanaRadar_MR72::update_sector_data(int16_t angle_deg, uint16_t distance_cm) { uint8_t sector; if (convert_angle_to_sector(angle_deg, sector)) { _angle[sector] = angle_deg; _distance[sector] = ((float) distance_cm) / 100; _distance_valid[sector] = distance_cm != 0xffff; _last_distance_received_ms = AP_HAL::millis(); // update boundary used for avoidance update_boundary_for_sector(sector, true); } }