// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- // Code by Jon Challinger // Modified by Paul Riseborough to implement a three loop autopilot // topology // // This library is free software; you can redistribute it and / or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. #include #include #include "AP_YawController.h" extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_YawController::var_info[] PROGMEM = { AP_GROUPINFO("K_A", 0, AP_YawController, _K_A, 0), AP_GROUPINFO("K_I", 1, AP_YawController, _K_I, 0), AP_GROUPINFO("K_D", 2, AP_YawController, _K_D, 0), AP_GROUPINFO("K_RLL", 3, AP_YawController, _K_FF, 1), AP_GROUPEND }; int32_t AP_YawController::get_servo_out(float scaler, bool stabilize, int16_t aspd_min, int16_t aspd_max) { uint32_t tnow = hal.scheduler->millis(); uint32_t dt = tnow - _last_t; if (_last_t == 0 || dt > 1000) { dt = 0; } _last_t = tnow; if(_ins == NULL) { // can't control without a reference return 0; } float delta_time = (float) dt / 1000.0f; // Calculate yaw rate required to keep up with a constant height coordinated turn float aspeed; float rate_offset; float bank_angle = _ahrs->roll; // limit bank angle between +- 80 deg if right way up if (fabsf(bank_angle) < 1.5707964f) { bank_angle = constrain_float(bank_angle,-1.3962634f,1.3962634f); } if (!_ahrs->airspeed_estimate(&aspeed)) { // If no airspeed available use average of min and max aspeed = 0.5f*(float(aspd_min) + float(aspd_max)); } rate_offset = (9.807f / max(aspeed , float(aspd_min))) * tanf(bank_angle) * cosf(bank_angle) * _K_FF; // Get body rate vector (radians/sec) float omega_z = _ahrs->get_gyro().z; // Get the accln vector (m/s^2) float accel_y = _ins->get_accel().y; // Subtract the steady turn component of rate from the measured rate // to calculate the rate relative to the turn requirement in degrees/sec float rate_hp_in = ToDeg(omega_z - rate_offset); // Apply a high-pass filter to the rate to washout any steady state error // due to bias errors in rate_offset // Use a cut-off frequency of omega = 0.2 rad/sec // Could make this adjustable by replacing 0.9960080 with (1 - omega * dt) float rate_hp_out = 0.9960080f * _last_rate_hp_out + rate_hp_in - _last_rate_hp_in; _last_rate_hp_out = rate_hp_out; _last_rate_hp_in = rate_hp_in; //Calculate input to integrator float integ_in = - _K_I * (_K_A * accel_y + rate_hp_out); // Apply integrator, but clamp input to prevent control saturation and freeze integrator below min FBW speed // Don't integrate if in stabilise mode as the integrator will wind up against the pilots inputs // Don't integrate if _K_D is zero as integrator will keep winding up if (!stabilize && _K_D > 0) { //only integrate if airspeed above min value if (aspeed > float(aspd_min)) { // prevent the integrator from increasing if surface defln demand is above the upper limit if (_last_out < -45) _integrator += max(integ_in * delta_time , 0); // prevent the integrator from decreasing if surface defln demand is below the lower limit else if (_last_out > 45) _integrator += min(integ_in * delta_time , 0); else _integrator += integ_in * delta_time; } } else { _integrator = 0; } // Protect against increases to _K_D during in-flight tuning from creating large control transients // due to stored integrator values if (_K_D > _K_D_last && _K_D > 0) { _integrator = _K_D_last/_K_D * _integrator; } _K_D_last = _K_D; // Calculate demanded rudder deflection, +Ve deflection yaws nose right // Save to last value before application of limiter so that integrator limiting // can detect exceedance next frame // Scale using inverse dynamic pressure (1/V^2) _last_out = _K_D * (_integrator - rate_hp_out) * scaler * scaler; // Convert to centi-degrees and constrain return constrain_float(_last_out * 100, -4500, 4500); } void AP_YawController::reset_I() { _integrator = 0; }