/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include #if defined(ARDUINO) && ARDUINO >= 100 #include "Arduino.h" #else #include #endif // Public Methods ////////////////////////////////////////////////////////////// // update_gains - update gains from time constant (given in seconds) void ThirdOrderCompFilter::update_gains(float time_constant_seconds_xy, float time_constant_seconds_z) { static float last_time_constant_xy = 0; static float last_time_constant_z = 0; // X & Y axis time constant if( time_constant_seconds_xy == 0 ) { _k1_xy = _k2_xy = _k3_xy = 0; }else{ if( time_constant_seconds_xy != last_time_constant_xy ) { _k1_xy = 3 / time_constant_seconds_xy; _k2_xy = 3 / (time_constant_seconds_xy*time_constant_seconds_xy); _k3_xy = 1 / (time_constant_seconds_xy*time_constant_seconds_xy*time_constant_seconds_xy); last_time_constant_xy = time_constant_seconds_xy; } } // Z axis time constant if( time_constant_seconds_z == 0 ) { _k1_z = _k2_z = _k3_z = 0; }else{ if( time_constant_seconds_z != last_time_constant_z ) { _k1_z = 3 / time_constant_seconds_z; _k2_z = 3 / (time_constant_seconds_z*time_constant_seconds_z); _k3_z = 1 / (time_constant_seconds_z*time_constant_seconds_z*time_constant_seconds_z); last_time_constant_z = time_constant_seconds_z; } } } // set_3rd_order - resets the first order value (i.e. position) void ThirdOrderCompFilter::set_3rd_order_xy(float x, float y) { _comp_h.x = x; _comp_h.y = y; _comp_h_correction.x = 0; _comp_h_correction.y = 0; // clear historic estimates _hist_3rd_order_estimates_x.clear(); _hist_3rd_order_estimates_y.clear(); } // set_3rd_order - resets the first order value (i.e. position) void ThirdOrderCompFilter::set_3rd_order_z(float z ) { _comp_h.z = z; _comp_h_correction.z = 0; } // set_2nd_order - resets the second order value (i.e. velocity) void ThirdOrderCompFilter::set_2nd_order_xy(float x, float y) { _comp_v.x = x; _comp_v.y = y; } // set_2nd_order - resets the second order value (i.e. velocity) void ThirdOrderCompFilter::set_2nd_order_z(float z ) { _comp_v.z = z; } // correct_3rd_order_z - correct accelerometer offsets using barometer or gps void ThirdOrderCompFilter::correct_3rd_order_xy(float x, float y, Matrix3f& dcm_matrix, float deltat) { float hist_comp_h_x, hist_comp_h_y; // 3rd order samples (i.e. position from gps) are delayed by 500ms // we store historical position at 10hz so 5 iterations ago if( _hist_3rd_order_estimates_x.num_items() >= 4 ) { hist_comp_h_x = _hist_3rd_order_estimates_x.peek(3); hist_comp_h_y = _hist_3rd_order_estimates_y.peek(3); }else{ hist_comp_h_x = _comp_h.x; hist_comp_h_y = _comp_h.y; } // calculate error in position from gps with our historical estimate float err_x = x - (hist_comp_h_x + _comp_h_correction.x); float err_y = y - (hist_comp_h_y + _comp_h_correction.y); // calculate correction to accelerometers and apply in the body frame _comp_k1o += dcm_matrix.mul_transpose(Vector3f((err_x*_k3_xy)*deltat,(err_y*_k3_xy)*deltat,0)); // correct velocity _comp_v.x += (err_x*_k2_xy) * deltat; _comp_v.y += (err_y*_k2_xy) * deltat; // correct position _comp_h_correction.x += err_x*_k1_xy * deltat; _comp_h_correction.y += err_y*_k1_xy * deltat; } // correct_3rd_order_z - correct accelerometer offsets using barometer or gps void ThirdOrderCompFilter::correct_3rd_order_z(float third_order_sample, Matrix3f& dcm_matrix, float deltat) { float hist_comp_h_z; // 3rd order samples (i.e. position from baro) are delayed by 150ms (15 iterations at 100hz) // so we should calculate error using historical estimates if( _hist_3rd_order_estimates_z.num_items() >= 15 ) { //hist_comp_h_z = _hist_3rd_order_estimates_z.get(); hist_comp_h_z = _hist_3rd_order_estimates_z.peek(14); }else{ hist_comp_h_z = _comp_h.z; } // calculate error in position from baro with our estimate float err = third_order_sample - (hist_comp_h_z + _comp_h_correction.z); // calculate correction to accelerometers and apply in the body frame _comp_k1o += dcm_matrix.mul_transpose(Vector3f(0,0,(err*_k3_z) * deltat)); // correct velocity _comp_v.z += (err*_k2_z) * deltat; // correct position _comp_h_correction.z += err*_k1_z * deltat; } // recalculate the 2nd and 3rd order estimates void ThirdOrderCompFilter::calculate(float deltat, Matrix3f& dcm_matrix) { // get earth frame accelerometer correction comp_k1o_ef = dcm_matrix * _comp_k1o; // calculate velocity by adding new acceleration from accelerometers _comp_v += (-_first_order_sample + comp_k1o_ef) * deltat; // calculate new estimate of position _comp_h += _comp_v * deltat; // store 3rd order estimate (i.e. estimated vertical position) for future use _hist_3rd_order_estimates_z.add(_comp_h.z); // store 3rd order estimate (i.e. horizontal position) for future use at 10hz _historic_xy_counter++; if( _historic_xy_counter >= THIRD_ORDER_SAVE_POS_10HZ ) { _historic_xy_counter = 0; _hist_3rd_order_estimates_x.add(_comp_h.x); _hist_3rd_order_estimates_y.add(_comp_h.y); } }