You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
460 lines
14 KiB
460 lines
14 KiB
/* |
|
* vector3.cpp |
|
* Copyright (C) Andrew Tridgell 2012 |
|
* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#pragma GCC optimize("O2") |
|
|
|
#include "AP_Math.h" |
|
|
|
template <typename T> |
|
T Vector2<T>::length_squared() const |
|
{ |
|
return (T)(x*x + y*y); |
|
} |
|
|
|
template <typename T> |
|
T Vector2<T>::length(void) const |
|
{ |
|
return norm(x, y); |
|
} |
|
|
|
// limit vector to a given length. returns true if vector was limited |
|
template <typename T> |
|
bool Vector2<T>::limit_length(T max_length) |
|
{ |
|
const T len = length(); |
|
if ((len > max_length) && is_positive(len)) { |
|
x *= (max_length / len); |
|
y *= (max_length / len); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// dot product |
|
template <typename T> |
|
T Vector2<T>::operator *(const Vector2<T> &v) const |
|
{ |
|
return x*v.x + y*v.y; |
|
} |
|
|
|
// cross product |
|
template <typename T> |
|
T Vector2<T>::operator %(const Vector2<T> &v) const |
|
{ |
|
return x*v.y - y*v.x; |
|
} |
|
|
|
template <typename T> |
|
Vector2<T> &Vector2<T>::operator *=(const T num) |
|
{ |
|
x*=num; y*=num; |
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
Vector2<T> &Vector2<T>::operator /=(const T num) |
|
{ |
|
x /= num; y /= num; |
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
Vector2<T> &Vector2<T>::operator -=(const Vector2<T> &v) |
|
{ |
|
x -= v.x; y -= v.y; |
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
bool Vector2<T>::is_nan(void) const |
|
{ |
|
return isnan(x) || isnan(y); |
|
} |
|
|
|
template <typename T> |
|
bool Vector2<T>::is_inf(void) const |
|
{ |
|
return isinf(x) || isinf(y); |
|
} |
|
|
|
template <typename T> |
|
Vector2<T> &Vector2<T>::operator +=(const Vector2<T> &v) |
|
{ |
|
x+=v.x; y+=v.y; |
|
return *this; |
|
} |
|
|
|
template <typename T> |
|
Vector2<T> Vector2<T>::operator /(const T num) const |
|
{ |
|
return Vector2<T>(x/num, y/num); |
|
} |
|
|
|
template <typename T> |
|
Vector2<T> Vector2<T>::operator *(const T num) const |
|
{ |
|
return Vector2<T>(x*num, y*num); |
|
} |
|
|
|
template <typename T> |
|
Vector2<T> Vector2<T>::operator -(const Vector2<T> &v) const |
|
{ |
|
return Vector2<T>(x-v.x, y-v.y); |
|
} |
|
|
|
template <typename T> |
|
Vector2<T> Vector2<T>::operator +(const Vector2<T> &v) const |
|
{ |
|
return Vector2<T>(x+v.x, y+v.y); |
|
} |
|
|
|
template <typename T> |
|
Vector2<T> Vector2<T>::operator -(void) const |
|
{ |
|
return Vector2<T>(-x,-y); |
|
} |
|
|
|
template <typename T> |
|
bool Vector2<T>::operator ==(const Vector2<T> &v) const |
|
{ |
|
return (is_equal(x,v.x) && is_equal(y,v.y)); |
|
} |
|
|
|
template <typename T> |
|
bool Vector2<T>::operator !=(const Vector2<T> &v) const |
|
{ |
|
return (!is_equal(x,v.x) || !is_equal(y,v.y)); |
|
} |
|
|
|
template <typename T> |
|
T Vector2<T>::angle(const Vector2<T> &v2) const |
|
{ |
|
const T len = this->length() * v2.length(); |
|
if (len <= 0) { |
|
return 0.0f; |
|
} |
|
const T cosv = ((*this)*v2) / len; |
|
if (cosv >= 1) { |
|
return 0.0f; |
|
} |
|
if (cosv <= -1) { |
|
return M_PI; |
|
} |
|
return acosF(cosv); |
|
} |
|
|
|
template <typename T> |
|
T Vector2<T>::angle(void) const |
|
{ |
|
return M_PI_2 + atan2F(-x, y); |
|
} |
|
|
|
// find the intersection between two line segments |
|
// returns true if they intersect, false if they do not |
|
// the point of intersection is returned in the intersection argument |
|
template <typename T> |
|
bool Vector2<T>::segment_intersection(const Vector2<T>& seg1_start, const Vector2<T>& seg1_end, const Vector2<T>& seg2_start, const Vector2<T>& seg2_end, Vector2<T>& intersection) |
|
{ |
|
// implementation borrowed from http://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect |
|
const Vector2<T> r1 = seg1_end - seg1_start; |
|
const Vector2<T> r2 = seg2_end - seg2_start; |
|
const Vector2<T> ss2_ss1 = seg2_start - seg1_start; |
|
const T r1xr2 = r1 % r2; |
|
const T q_pxr = ss2_ss1 % r1; |
|
if (::is_zero(r1xr2)) { |
|
// either collinear or parallel and non-intersecting |
|
return false; |
|
} else { |
|
// t = (q - p) * s / (r * s) |
|
// u = (q - p) * r / (r * s) |
|
const T t = (ss2_ss1 % r2) / r1xr2; |
|
const T u = q_pxr / r1xr2; |
|
if ((u >= 0) && (u <= 1) && (t >= 0) && (t <= 1)) { |
|
// lines intersect |
|
// t can be any non-negative value because (p, p + r) is a ray |
|
// u must be between 0 and 1 because (q, q + s) is a line segment |
|
intersection = seg1_start + (r1*t); |
|
return true; |
|
} else { |
|
// non-parallel and non-intersecting |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
// find the intersection between a line segment and a circle |
|
// returns true if they intersect and intersection argument is updated with intersection closest to seg_start |
|
// solution adapted from http://stackoverflow.com/questions/1073336/circle-line-segment-collision-detection-algorithm |
|
template <typename T> |
|
bool Vector2<T>::circle_segment_intersection(const Vector2<T>& seg_start, const Vector2<T>& seg_end, const Vector2<T>& circle_center, T radius, Vector2<T>& intersection) |
|
{ |
|
// calculate segment start and end as offsets from circle's center |
|
const Vector2<T> seg_start_local = seg_start - circle_center; |
|
|
|
// calculate vector from start to end |
|
const Vector2<T> seg_end_minus_start = seg_end - seg_start; |
|
|
|
const T a = sq(seg_end_minus_start.x) + sq(seg_end_minus_start.y); |
|
const T b = 2 * ((seg_end_minus_start.x * seg_start_local.x) + (seg_end_minus_start.y * seg_start_local.y)); |
|
const T c = sq(seg_start_local.x) + sq(seg_start_local.y) - sq(radius); |
|
|
|
// check for invalid data |
|
if (::is_zero(a) || isnan(a) || isnan(b) || isnan(c)) { |
|
return false; |
|
} |
|
|
|
const T delta = sq(b) - (4.0f * a * c); |
|
|
|
if (isnan(delta)) { |
|
return false; |
|
} |
|
|
|
// check for invalid delta (i.e. discriminant) |
|
if (delta < 0.0f) { |
|
return false; |
|
} |
|
|
|
const T delta_sqrt = sqrtF(delta); |
|
const T t1 = (-b + delta_sqrt) / (2.0f * a); |
|
const T t2 = (-b - delta_sqrt) / (2.0f * a); |
|
|
|
// Three hit cases: |
|
// -o-> --|--> | | --|-> |
|
// Impale(t1 hit,t2 hit), Poke(t1 hit,t2>1), ExitWound(t1<0, t2 hit), |
|
|
|
// Three miss cases: |
|
// -> o o -> | -> | |
|
// FallShort (t1>1,t2>1), Past (t1<0,t2<0), CompletelyInside(t1<0, t2>1) |
|
|
|
// intersection = new Vector3(E.x + t1 * d.x, secondPoint.y, E.y + t1 * d.y); |
|
// intersection.x = seg_start.x + t1 * seg_end_minus_start.x; |
|
// intersection.y = seg_start.y + t1 * seg_end_minus_start.y; |
|
|
|
if ((t1 >= 0.0f) && (t1 <= 1.0f)) { |
|
// t1 is the intersection, and it is closer than t2 (since t1 uses -b - discriminant) |
|
// Impale, Poke |
|
intersection = seg_start + (seg_end_minus_start * t1); |
|
return true; |
|
} |
|
|
|
// here t1 did not intersect so we are either started inside the sphere or completely past it |
|
if ((t2 >= 0.0f) && (t2 <= 1.0f)) { |
|
// ExitWound |
|
intersection = seg_start + (seg_end_minus_start * t2); |
|
return true; |
|
} |
|
|
|
// no intersection: FallShort, Past or CompletelyInside |
|
return false; |
|
} |
|
|
|
// normalizes this vector |
|
template <typename T> |
|
void Vector2<T>::normalize() |
|
{ |
|
*this /= length(); |
|
} |
|
|
|
// returns the normalized vector |
|
template <typename T> |
|
Vector2<T> Vector2<T>::normalized() const |
|
{ |
|
return *this/length(); |
|
} |
|
|
|
// reflects this vector about n |
|
template <typename T> |
|
void Vector2<T>::reflect(const Vector2<T> &n) |
|
{ |
|
const Vector2<T> orig(*this); |
|
project(n); |
|
*this = *this*2 - orig; |
|
} |
|
|
|
// projects this vector onto v |
|
template <typename T> |
|
void Vector2<T>::project(const Vector2<T> &v) |
|
{ |
|
*this= v * (*this * v)/(v*v); |
|
} |
|
|
|
// returns this vector projected onto v |
|
template <typename T> |
|
Vector2<T> Vector2<T>::projected(const Vector2<T> &v) |
|
{ |
|
return v * (*this * v)/(v*v); |
|
} |
|
|
|
// extrapolate position given bearing (in degrees) and distance |
|
template <typename T> |
|
void Vector2<T>::offset_bearing(T bearing, T distance) |
|
{ |
|
x += cosF(radians(bearing)) * distance; |
|
y += sinF(radians(bearing)) * distance; |
|
} |
|
|
|
// given a position pos_delta and a velocity v1 produce a vector |
|
// perpendicular to v1 maximising distance from p1 |
|
template <typename T> |
|
Vector2<T> Vector2<T>::perpendicular(const Vector2<T> &pos_delta, const Vector2<T> &v1) |
|
{ |
|
const Vector2<T> perpendicular1 = Vector2<T>(-v1[1], v1[0]); |
|
const Vector2<T> perpendicular2 = Vector2<T>(v1[1], -v1[0]); |
|
const T d1 = perpendicular1 * pos_delta; |
|
const T d2 = perpendicular2 * pos_delta; |
|
if (d1 > d2) { |
|
return perpendicular1; |
|
} |
|
return perpendicular2; |
|
} |
|
|
|
/* |
|
* Returns the point closest to p on the line segment (v,w). |
|
* |
|
* Comments and implementation taken from |
|
* http://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment |
|
*/ |
|
template <typename T> |
|
Vector2<T> Vector2<T>::closest_point(const Vector2<T> &p, const Vector2<T> &v, const Vector2<T> &w) |
|
{ |
|
// length squared of line segment |
|
const T l2 = (v - w).length_squared(); |
|
if (l2 < FLT_EPSILON) { |
|
// v == w case |
|
return v; |
|
} |
|
// Consider the line extending the segment, parameterized as v + t (w - v). |
|
// We find projection of point p onto the line. |
|
// It falls where t = [(p-v) . (w-v)] / |w-v|^2 |
|
// We clamp t from [0,1] to handle points outside the segment vw. |
|
const T t = ((p - v) * (w - v)) / l2; |
|
if (t <= 0) { |
|
return v; |
|
} else if (t >= 1) { |
|
return w; |
|
} else { |
|
return v + (w - v)*t; |
|
} |
|
} |
|
|
|
/* |
|
* Returns the point closest to p on the line segment (0,w). |
|
* |
|
* this is a simplification of closest point with a general segment, with v=(0,0) |
|
*/ |
|
template <typename T> |
|
Vector2<T> Vector2<T>::closest_point(const Vector2<T> &p, const Vector2<T> &w) |
|
{ |
|
// length squared of line segment |
|
const T l2 = w.length_squared(); |
|
if (l2 < FLT_EPSILON) { |
|
// v == w case |
|
return w; |
|
} |
|
const T t = (p * w) / l2; |
|
if (t <= 0) { |
|
return Vector2<T>(0,0); |
|
} else if (t >= 1) { |
|
return w; |
|
} else { |
|
return w*t; |
|
} |
|
} |
|
|
|
// closest distance between a line segment and a point |
|
// https://stackoverflow.com/questions/2824478/shortest-distance-between-two-line-segments |
|
template <typename T> |
|
T Vector2<T>::closest_distance_between_line_and_point_squared(const Vector2<T> &w1, |
|
const Vector2<T> &w2, |
|
const Vector2<T> &p) |
|
{ |
|
return closest_distance_between_radial_and_point_squared(w2-w1, p-w1); |
|
} |
|
|
|
// w1 and w2 define a line segment |
|
// p is a point |
|
// returns the closest distance between the line segment and the point |
|
template <typename T> |
|
T Vector2<T>::closest_distance_between_line_and_point(const Vector2<T> &w1, |
|
const Vector2<T> &w2, |
|
const Vector2<T> &p) |
|
{ |
|
return sqrtF(closest_distance_between_line_and_point_squared(w1, w2, p)); |
|
} |
|
|
|
// a1->a2 and b2->v2 define two line segments |
|
// returns the square of the closest distance between the two line segments |
|
// see https://stackoverflow.com/questions/2824478/shortest-distance-between-two-line-segments |
|
template <typename T> |
|
T Vector2<T>::closest_distance_between_lines_squared(const Vector2<T> &a1, |
|
const Vector2<T> &a2, |
|
const Vector2<T> &b1, |
|
const Vector2<T> &b2) |
|
{ |
|
const T dist1 = Vector2<T>::closest_distance_between_line_and_point_squared(b1,b2,a1); |
|
const T dist2 = Vector2<T>::closest_distance_between_line_and_point_squared(b1,b2,a2); |
|
const T dist3 = Vector2<T>::closest_distance_between_line_and_point_squared(a1,a2,b1); |
|
const T dist4 = Vector2<T>::closest_distance_between_line_and_point_squared(a1,a2,b2); |
|
const T m1 = MIN(dist1,dist2); |
|
const T m2 = MIN(dist3,dist4); |
|
return MIN(m1,m2); |
|
} |
|
|
|
// w defines a line segment from the origin |
|
// p is a point |
|
// returns the square of the closest distance between the radial and the point |
|
template <typename T> |
|
T Vector2<T>::closest_distance_between_radial_and_point_squared(const Vector2<T> &w, |
|
const Vector2<T> &p) |
|
{ |
|
const Vector2<T> closest = closest_point(p, w); |
|
return (closest - p).length_squared(); |
|
} |
|
|
|
// w defines a line segment from the origin |
|
// p is a point |
|
// returns the closest distance between the radial and the point |
|
template <typename T> |
|
T Vector2<T>::closest_distance_between_radial_and_point(const Vector2<T> &w, |
|
const Vector2<T> &p) |
|
{ |
|
return sqrtF(closest_distance_between_radial_and_point_squared(w,p)); |
|
} |
|
|
|
// rotate vector by angle in radians |
|
template <typename T> |
|
void Vector2<T>::rotate(T angle_rad) |
|
{ |
|
const T cs = cosF(angle_rad); |
|
const T sn = sinF(angle_rad); |
|
T rx = x * cs - y * sn; |
|
T ry = x * sn + y * cs; |
|
x = rx; |
|
y = ry; |
|
} |
|
|
|
// define for float and double |
|
template class Vector2<float>; |
|
template class Vector2<double>; |
|
|
|
// define some ops for int and long |
|
template bool Vector2<long>::operator ==(const Vector2<long> &v) const; |
|
template bool Vector2<long>::operator !=(const Vector2<long> &v) const; |
|
template bool Vector2<int>::operator ==(const Vector2<int> &v) const; |
|
template bool Vector2<int>::operator !=(const Vector2<int> &v) const; |
|
|
|
|