You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
317 lines
9.2 KiB
317 lines
9.2 KiB
/* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
FRSky FPort implementation, with thanks to BetaFlight for |
|
specification and code reference |
|
*/ |
|
|
|
#include "AP_RCProtocol_FPort.h" |
|
#include <AP_Vehicle/AP_Vehicle_Type.h> |
|
#include <AP_Frsky_Telem/AP_Frsky_Telem.h> |
|
#include <RC_Channel/RC_Channel.h> |
|
#include <AP_Math/AP_Math.h> |
|
#include <AP_Math/crc.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
#define FRAME_HEAD 0x7E |
|
#define FRAME_DLE 0x7D |
|
#define FRAME_XOR 0x20 |
|
#define FRAME_LEN_CONTROL 0x19 |
|
#define FRAME_LEN_DOWNLINK 0x08 |
|
#define MIN_FRAME_SIZE 12 |
|
#define MAX_CHANNELS 16 |
|
|
|
#define FLAGS_FAILSAFE_BIT 3 |
|
#define FLAGS_FRAMELOST_BIT 2 |
|
|
|
#define CHAN_SCALE_FACTOR1 1000U |
|
#define CHAN_SCALE_FACTOR2 1600U |
|
#define CHAN_SCALE_OFFSET 875U |
|
|
|
#define FPORT_TYPE_CONTROL 0 |
|
#define FPORT_TYPE_DOWNLINK 1 |
|
#define FPORT_PRIM_NULL 0x00 |
|
#define FPORT_PRIM_DATA 0x10 |
|
#define FPORT_PRIM_READ 0x30 |
|
#define FPORT_PRIM_WRITE 0x31 |
|
|
|
#define MAX_FPORT_CONSECUTIVE_FRAMES 2 |
|
|
|
struct PACKED FPort_Frame { |
|
uint8_t header; // 0x7E |
|
uint8_t len; // 0x19 for control, 0x08 for downlink |
|
uint8_t type; |
|
union { |
|
struct PACKED { |
|
uint8_t data[22]; // 16 11-bit channels |
|
uint8_t flags; |
|
uint8_t rssi; |
|
uint8_t crc; |
|
uint8_t end; |
|
} control; |
|
struct PACKED { |
|
uint8_t prim; |
|
uint16_t appid; |
|
uint8_t data[4]; |
|
uint8_t crc; |
|
uint8_t end; |
|
} downlink; |
|
}; |
|
}; |
|
|
|
static_assert(sizeof(FPort_Frame) == FPORT_CONTROL_FRAME_SIZE, "FPort_Frame incorrect size"); |
|
|
|
// constructor |
|
AP_RCProtocol_FPort::AP_RCProtocol_FPort(AP_RCProtocol &_frontend, bool _inverted) : |
|
AP_RCProtocol_Backend(_frontend), |
|
inverted(_inverted) |
|
{} |
|
|
|
// decode a full FPort control frame |
|
void AP_RCProtocol_FPort::decode_control(const FPort_Frame &frame) |
|
{ |
|
uint16_t values[MAX_CHANNELS]; |
|
|
|
decode_11bit_channels(frame.control.data, MAX_CHANNELS, values, CHAN_SCALE_FACTOR1, CHAN_SCALE_FACTOR2, CHAN_SCALE_OFFSET); |
|
|
|
bool failsafe = ((frame.control.flags & (1 << FLAGS_FAILSAFE_BIT)) != 0); |
|
|
|
// fport rssi 0-50, ardupilot rssi 0-255, scale factor 255/50=5.1 |
|
const uint8_t scaled_rssi = MIN(frame.control.rssi * 5.1f, 255); |
|
|
|
add_input(MAX_CHANNELS, values, failsafe, scaled_rssi); |
|
} |
|
|
|
/* |
|
decode a full FPort downlink frame |
|
*/ |
|
void AP_RCProtocol_FPort::decode_downlink(const FPort_Frame &frame) |
|
{ |
|
#if !APM_BUILD_TYPE(APM_BUILD_iofirmware) |
|
switch (frame.downlink.prim) { |
|
case FPORT_PRIM_DATA: |
|
// we've seen at least one 0x10 frame |
|
rx_driven_frame_rate = true; |
|
break; |
|
case FPORT_PRIM_NULL: |
|
if (rx_driven_frame_rate) { |
|
return; |
|
} |
|
// with 0x00 and no rx control we have a constraint |
|
// on max consecutive frames |
|
if (consecutive_telemetry_frame_count >= MAX_FPORT_CONSECUTIVE_FRAMES) { |
|
consecutive_telemetry_frame_count = 0; |
|
return; |
|
} else { |
|
consecutive_telemetry_frame_count++; |
|
} |
|
break; |
|
case FPORT_PRIM_READ: |
|
case FPORT_PRIM_WRITE: |
|
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL |
|
AP_Frsky_Telem::set_telem_data(frame.downlink.prim, frame.downlink.appid, le32toh_ptr(frame.downlink.data)); |
|
#endif //HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL |
|
// do not respond to 0x30 and 0x31 |
|
return; |
|
} |
|
|
|
/* |
|
if we are getting FPORT over a UART then we can ask the FrSky |
|
telem library for some passthrough data to send back, enabling |
|
telemetry on the receiver via the same uart pin as we use for |
|
incoming RC frames |
|
*/ |
|
|
|
AP_HAL::UARTDriver *uart = get_UART(); |
|
if (!uart) { |
|
return; |
|
} |
|
|
|
/* |
|
get SPort data from FRSky_Telem or send a null frame. |
|
We save the data to a variable so in case we're late we'll |
|
send it in the next call, this prevents corruption of |
|
status text messages |
|
*/ |
|
if (!telem_data.available) { |
|
uint8_t packet_count; |
|
if (!AP_Frsky_Telem::get_telem_data(&telem_data.packet, packet_count, 1)) { |
|
// nothing to send, send a null frame |
|
telem_data.packet.frame = 0x00; |
|
telem_data.packet.appid = 0x00; |
|
telem_data.packet.data = 0x00; |
|
} |
|
telem_data.available = true; |
|
} |
|
/* |
|
check that we haven't been too slow in responding to the new |
|
UART data. If we respond too late then we will corrupt the next |
|
incoming control frame |
|
*/ |
|
uint64_t tend = uart->receive_time_constraint_us(1); |
|
uint64_t now = AP_HAL::micros64(); |
|
uint64_t tdelay = now - tend; |
|
if (tdelay > 2500) { |
|
// we've been too slow in responding |
|
return; |
|
} |
|
uint8_t buf[10]; |
|
|
|
buf[0] = 0x08; |
|
buf[1] = 0x81; |
|
buf[2] = telem_data.packet.frame; |
|
buf[3] = telem_data.packet.appid & 0xFF; |
|
buf[4] = telem_data.packet.appid >> 8; |
|
memcpy(&buf[5], &telem_data.packet.data, 4); |
|
buf[9] = crc_sum8(&buf[0], 9); |
|
|
|
// perform byte stuffing per FPort spec |
|
uint8_t len = 0; |
|
uint8_t buf2[sizeof(buf)*2+1]; |
|
|
|
if (rc().fport_pad()) { |
|
// this padding helps on some uarts that have hw pullups |
|
buf2[len++] = 0xff; |
|
} |
|
|
|
for (uint8_t i=0; i<sizeof(buf); i++) { |
|
uint8_t c = buf[i]; |
|
if (c == FRAME_DLE || buf[i] == FRAME_HEAD) { |
|
buf2[len++] = FRAME_DLE; |
|
buf2[len++] = c ^ FRAME_XOR; |
|
} else { |
|
buf2[len++] = c; |
|
} |
|
} |
|
uart->write(buf2, len); |
|
// get fresh telem_data in the next call |
|
telem_data.available = false; |
|
#endif |
|
} |
|
|
|
/* |
|
process a FPort input pulse of the given width |
|
*/ |
|
void AP_RCProtocol_FPort::process_pulse(uint32_t width_s0, uint32_t width_s1) |
|
{ |
|
if (have_UART()) { |
|
// if we can use a UART we would much prefer to, as it allows |
|
// us to send SPORT data out |
|
return; |
|
} |
|
uint32_t w0 = width_s0; |
|
uint32_t w1 = width_s1; |
|
if (inverted) { |
|
w0 = saved_width; |
|
w1 = width_s0; |
|
saved_width = width_s1; |
|
} |
|
uint8_t b; |
|
if (ss.process_pulse(w0, w1, b)) { |
|
_process_byte(ss.get_byte_timestamp_us(), b); |
|
} |
|
} |
|
|
|
// support byte input |
|
void AP_RCProtocol_FPort::_process_byte(uint32_t timestamp_us, uint8_t b) |
|
{ |
|
const bool have_frame_gap = (timestamp_us - byte_input.last_byte_us >= 2000U); |
|
|
|
byte_input.last_byte_us = timestamp_us; |
|
|
|
if (have_frame_gap) { |
|
// if we have a frame gap then this must be the start of a new |
|
// frame |
|
byte_input.ofs = 0; |
|
byte_input.got_DLE = false; |
|
} |
|
if (b != FRAME_HEAD && byte_input.ofs == 0) { |
|
// definately not FPort, missing header byte |
|
return; |
|
} |
|
|
|
// handle byte-stuffing decode |
|
if (byte_input.got_DLE) { |
|
b ^= FRAME_XOR; |
|
byte_input.got_DLE = false; |
|
} else if (b == FRAME_DLE) { |
|
byte_input.got_DLE = true; |
|
return; |
|
} |
|
|
|
byte_input.buf[byte_input.ofs++] = b; |
|
|
|
const FPort_Frame *frame = (const FPort_Frame *)&byte_input.buf[0]; |
|
|
|
if (byte_input.ofs == 2) { |
|
// check for valid lengths |
|
if (frame->len != FRAME_LEN_CONTROL && |
|
frame->len != FRAME_LEN_DOWNLINK) { |
|
// invalid, reset |
|
goto reset; |
|
} |
|
} |
|
|
|
if (byte_input.ofs == 3) { |
|
// check for valid lengths |
|
if ((frame->type == FPORT_TYPE_CONTROL && frame->len != FRAME_LEN_CONTROL) || |
|
(frame->type == FPORT_TYPE_DOWNLINK && frame->len != FRAME_LEN_DOWNLINK)) { |
|
goto reset; |
|
} |
|
if (frame->type != FPORT_TYPE_CONTROL && frame->type != FPORT_TYPE_DOWNLINK) { |
|
// invalid type |
|
goto reset; |
|
} |
|
} |
|
|
|
if (frame->type == FPORT_TYPE_CONTROL && byte_input.ofs == FRAME_LEN_CONTROL + 4) { |
|
log_data(AP_RCProtocol::FPORT, timestamp_us, byte_input.buf, byte_input.ofs); |
|
if (check_checksum()) { |
|
decode_control(*frame); |
|
} |
|
goto reset; |
|
} else if (frame->type == FPORT_TYPE_DOWNLINK && byte_input.ofs == FRAME_LEN_DOWNLINK + 4) { |
|
log_data(AP_RCProtocol::FPORT, timestamp_us, byte_input.buf, byte_input.ofs); |
|
if (check_checksum()) { |
|
decode_downlink(*frame); |
|
} |
|
goto reset; |
|
} |
|
if (byte_input.ofs == sizeof(byte_input.buf)) { |
|
goto reset; |
|
} |
|
return; |
|
|
|
reset: |
|
byte_input.ofs = 0; |
|
byte_input.got_DLE = false; |
|
} |
|
|
|
// check checksum byte |
|
bool AP_RCProtocol_FPort::check_checksum(void) |
|
{ |
|
const uint8_t len = byte_input.buf[1]+2; |
|
return crc_sum8(&byte_input.buf[1], len) == 0x00; |
|
} |
|
|
|
// support byte input |
|
void AP_RCProtocol_FPort::process_byte(uint8_t b, uint32_t baudrate) |
|
{ |
|
if (baudrate != 115200) { |
|
return; |
|
} |
|
_process_byte(AP_HAL::micros(), b); |
|
}
|
|
|