You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
523 lines
20 KiB
523 lines
20 KiB
#!/usr/bin/env python |
|
''' |
|
Create temperature calibration parameters for IMUs based on log data. |
|
''' |
|
|
|
from argparse import ArgumentParser |
|
parser = ArgumentParser(description=__doc__) |
|
parser.add_argument("--outfile", default="tcal.parm", help='set output file') |
|
parser.add_argument("--no-graph", action='store_true', default=False, help='disable graph display') |
|
parser.add_argument("--log-parm", action='store_true', default=False, help='show corrections using coefficients from log file') |
|
parser.add_argument("--online", action='store_true', default=False, help='use online polynomial fitting') |
|
parser.add_argument("--tclr", action='store_true', default=False, help='use TCLR messages from log instead of IMU messages') |
|
parser.add_argument("log", metavar="LOG") |
|
|
|
args = parser.parse_args() |
|
|
|
import sys |
|
import math |
|
import re |
|
from pymavlink import mavutil |
|
import numpy as np |
|
import matplotlib.pyplot as pyplot |
|
from scipy import signal |
|
from pymavlink.rotmat import Vector3, Matrix3 |
|
|
|
# fit an order 3 polynomial |
|
POLY_ORDER = 3 |
|
|
|
# we use a fixed reference temperature of 35C. This has the advantage that |
|
# we don't need to know the final temperature when doing an online calibration |
|
# which allows us to have a calibration timeout |
|
TEMP_REF = 35.0 |
|
|
|
# we scale the parameters so the values work nicely in |
|
# parameter editors and parameter files that don't |
|
# use exponential notation |
|
SCALE_FACTOR = 1.0e6 |
|
|
|
AXES = ['X','Y','Z'] |
|
AXEST = ['X','Y','Z','T','time'] |
|
|
|
class Coefficients: |
|
'''class representing a set of coefficients''' |
|
def __init__(self): |
|
self.acoef = {} |
|
self.gcoef = {} |
|
self.enable = [0]*3 |
|
self.tmin = [-100]*3 |
|
self.tmax = [-100]*3 |
|
self.gtcal = {} |
|
self.atcal = {} |
|
self.gofs = {} |
|
self.aofs = {} |
|
|
|
def set_accel_poly(self, imu, axis, values): |
|
if imu not in self.acoef: |
|
self.acoef[imu] = {} |
|
self.acoef[imu][axis] = values |
|
|
|
def set_gyro_poly(self, imu, axis, values): |
|
if imu not in self.gcoef: |
|
self.gcoef[imu] = {} |
|
self.gcoef[imu][axis] = values |
|
|
|
def set_acoeff(self, imu, axis, order, value): |
|
if imu not in self.acoef: |
|
self.acoef[imu] = {} |
|
if not axis in self.acoef[imu]: |
|
self.acoef[imu][axis] = [0]*4 |
|
self.acoef[imu][axis][POLY_ORDER-order] = value |
|
|
|
def set_gcoeff(self, imu, axis, order, value): |
|
if imu not in self.gcoef: |
|
self.gcoef[imu] = {} |
|
if not axis in self.gcoef[imu]: |
|
self.gcoef[imu][axis] = [0]*4 |
|
self.gcoef[imu][axis][POLY_ORDER-order] = value |
|
|
|
def set_aoffset(self, imu, axis, value): |
|
if imu not in self.aofs: |
|
self.aofs[imu] = {} |
|
self.aofs[imu][axis] = value |
|
|
|
def set_goffset(self, imu, axis, value): |
|
if imu not in self.gofs: |
|
self.gofs[imu] = {} |
|
self.gofs[imu][axis] = value |
|
|
|
def set_tmin(self, imu, tmin): |
|
self.tmin[imu] = tmin |
|
|
|
def set_tmax(self, imu, tmax): |
|
self.tmax[imu] = tmax |
|
|
|
def set_gyro_tcal(self, imu, value): |
|
self.gtcal[imu] = value |
|
|
|
def set_accel_tcal(self, imu, value): |
|
self.atcal[imu] = value |
|
|
|
def set_enable(self, imu, value): |
|
self.enable[imu] = value |
|
|
|
def correction(self, coeff, imu, temperature, axis, cal_temp): |
|
'''calculate correction from temperature calibration from log data using parameters''' |
|
if self.enable[imu] != 1.0: |
|
return 0.0 |
|
if cal_temp < -80: |
|
return 0.0 |
|
if not axis in coeff: |
|
return 0.0 |
|
temperature = constrain(temperature, self.tmin[imu], self.tmax[imu]) |
|
cal_temp = constrain(cal_temp, self.tmin[imu], self.tmax[imu]) |
|
poly = np.poly1d(coeff[axis]) |
|
return poly(cal_temp - TEMP_REF) - poly(temperature - TEMP_REF) |
|
|
|
def correction_accel(self, imu, temperature): |
|
'''calculate accel correction from temperature calibration from |
|
log data using parameters''' |
|
cal_temp = self.atcal.get(imu, TEMP_REF) |
|
return Vector3(self.correction(self.acoef[imu], imu, temperature, 'X', cal_temp), |
|
self.correction(self.acoef[imu], imu, temperature, 'Y', cal_temp), |
|
self.correction(self.acoef[imu], imu, temperature, 'Z', cal_temp)) |
|
|
|
|
|
def correction_gyro(self, imu, temperature): |
|
'''calculate gyro correction from temperature calibration from |
|
log data using parameters''' |
|
cal_temp = self.gtcal.get(imu, TEMP_REF) |
|
return Vector3(self.correction(self.gcoef[imu], imu, temperature, 'X', cal_temp), |
|
self.correction(self.gcoef[imu], imu, temperature, 'Y', cal_temp), |
|
self.correction(self.gcoef[imu], imu, temperature, 'Z', cal_temp)) |
|
|
|
def param_string(self, imu): |
|
params = '' |
|
params += 'INS_TCAL%u_ENABLE 1\n' % (imu+1) |
|
params += 'INS_TCAL%u_TMIN %.1f\n' % (imu+1, self.tmin[imu]) |
|
params += 'INS_TCAL%u_TMAX %.1f\n' % (imu+1, self.tmax[imu]) |
|
# note that we don't save the first term of the polynomial as that is a |
|
# constant offset which is already handled by the accel/gyro constant |
|
# offsets. We only same the temperature dependent part of the |
|
# calibration |
|
for p in range(POLY_ORDER): |
|
for axis in AXES: |
|
params += 'INS_TCAL%u_ACC%u_%s %.9f\n' % (imu+1, p+1, axis, self.acoef[imu][axis][POLY_ORDER-(p+1)]*SCALE_FACTOR) |
|
for p in range(POLY_ORDER): |
|
for axis in AXES: |
|
params += 'INS_TCAL%u_GYR%u_%s %.9f\n' % (imu+1, p+1, axis, self.gcoef[imu][axis][POLY_ORDER-(p+1)]*SCALE_FACTOR) |
|
return params |
|
|
|
|
|
class OnlineIMUfit: |
|
'''implement the online learning used in ArduPilot''' |
|
def __init__(self): |
|
pass |
|
|
|
def update(self, x, y): |
|
temp = 1.0 |
|
|
|
for i in range(2*(self.porder - 1), -1, -1): |
|
k = 0 if (i < self.porder) else (i - self.porder + 1) |
|
for j in range(i - k, k-1, -1): |
|
self.mat[j][i-j] += temp |
|
temp *= x |
|
|
|
temp = 1.0 |
|
for i in range(self.porder-1, -1, -1): |
|
self.vec[i] += y * temp |
|
temp *= x |
|
|
|
def get_polynomial(self): |
|
inv_mat = np.linalg.inv(self.mat) |
|
res = np.zeros(self.porder) |
|
for i in range(self.porder): |
|
for j in range(self.porder): |
|
res[i] += inv_mat[i][j] * self.vec[j] |
|
return res |
|
|
|
def polyfit(self, x, y, order): |
|
self.porder = order + 1 |
|
self.mat = np.zeros((self.porder, self.porder)) |
|
self.vec = np.zeros(self.porder) |
|
for i in range(len(x)): |
|
self.update(x[i], y[i]) |
|
return self.get_polynomial() |
|
|
|
class IMUData: |
|
def __init__(self): |
|
self.accel = {} |
|
self.gyro = {} |
|
|
|
def IMUs(self): |
|
'''return list of IMUs''' |
|
if len(self.accel.keys()) != len(self.gyro.keys()): |
|
print("accel and gyro data doesn't match") |
|
sys.exit(1) |
|
return self.accel.keys() |
|
|
|
def add_accel(self, imu, temperature, time, value): |
|
if imu not in self.accel: |
|
self.accel[imu] = {} |
|
for axis in AXEST: |
|
self.accel[imu][axis] = np.zeros(0,dtype=float) |
|
self.accel[imu]['T'] = np.append(self.accel[imu]['T'], temperature) |
|
self.accel[imu]['X'] = np.append(self.accel[imu]['X'], value.x) |
|
self.accel[imu]['Y'] = np.append(self.accel[imu]['Y'], value.y) |
|
self.accel[imu]['Z'] = np.append(self.accel[imu]['Z'], value.z) |
|
self.accel[imu]['time'] = np.append(self.accel[imu]['time'], time) |
|
|
|
def add_gyro(self, imu, temperature, time, value): |
|
if imu not in self.gyro: |
|
self.gyro[imu] = {} |
|
for axis in AXEST: |
|
self.gyro[imu][axis] = np.zeros(0,dtype=float) |
|
self.gyro[imu]['T'] = np.append(self.gyro[imu]['T'], temperature) |
|
self.gyro[imu]['X'] = np.append(self.gyro[imu]['X'], value.x) |
|
self.gyro[imu]['Y'] = np.append(self.gyro[imu]['Y'], value.y) |
|
self.gyro[imu]['Z'] = np.append(self.gyro[imu]['Z'], value.z) |
|
self.gyro[imu]['time'] = np.append(self.gyro[imu]['time'], time) |
|
|
|
def moving_average(self, data, w): |
|
'''apply a moving average filter over a window of width w''' |
|
ret = np.cumsum(data) |
|
ret[w:] = ret[w:] - ret[:-w] |
|
return ret[w - 1:] / w |
|
|
|
def FilterArray(self, data, width_s): |
|
'''apply moving average filter of width width_s seconds''' |
|
nseconds = data['time'][-1] - data['time'][0] |
|
nsamples = len(data['time']) |
|
window = int(nsamples / nseconds) * width_s |
|
if window > 1: |
|
for axis in AXEST: |
|
data[axis] = self.moving_average(data[axis], window) |
|
return data |
|
|
|
def Filter(self, width_s): |
|
'''apply moving average filter of width width_s seconds''' |
|
for imu in self.IMUs(): |
|
self.accel[imu] = self.FilterArray(self.accel[imu], width_s) |
|
self.gyro[imu] = self.FilterArray(self.gyro[imu], width_s) |
|
|
|
def accel_at_temp(self, imu, axis, temperature): |
|
'''return the accel value closest to the given temperature''' |
|
if temperature < self.accel[imu]['T'][0]: |
|
return self.accel[imu][axis][0] |
|
for i in range(len(self.accel[imu]['T'])-1): |
|
if temperature >= self.accel[imu]['T'][i] and temperature <= self.accel[imu]['T'][i+1]: |
|
v1 = self.accel[imu][axis][i] |
|
v2 = self.accel[imu][axis][i+1] |
|
p = (temperature - self.accel[imu]['T'][i]) / (self.accel[imu]['T'][i+1]-self.accel[imu]['T'][i]) |
|
return v1 + (v2-v1) * p |
|
return self.accel[imu][axis][-1] |
|
|
|
def gyro_at_temp(self, imu, axis, temperature): |
|
'''return the gyro value closest to the given temperature''' |
|
if temperature < self.gyro[imu]['T'][0]: |
|
return self.gyro[imu][axis][0] |
|
for i in range(len(self.gyro[imu]['T'])-1): |
|
if temperature >= self.gyro[imu]['T'][i] and temperature <= self.gyro[imu]['T'][i+1]: |
|
v1 = self.gyro[imu][axis][i] |
|
v2 = self.gyro[imu][axis][i+1] |
|
p = (temperature - self.gyro[imu]['T'][i]) / (self.gyro[imu]['T'][i+1]-self.gyro[imu]['T'][i]) |
|
return v1 + (v2-v1) * p |
|
return self.gyro[imu][axis][-1] |
|
|
|
|
|
def constrain(value, minv, maxv): |
|
"""Constrain a value to a range.""" |
|
if value < minv: |
|
value = minv |
|
if value > maxv: |
|
value = maxv |
|
return value |
|
|
|
def IMUfit(logfile): |
|
'''find IMU calibration parameters from a log file''' |
|
print("Processing log %s" % logfile) |
|
mlog = mavutil.mavlink_connection(logfile) |
|
|
|
data = IMUData() |
|
|
|
c = Coefficients() |
|
orientation = 0 |
|
|
|
stop_capture = [ False ] * 3 |
|
|
|
if args.tclr: |
|
messages = ['PARM','TCLR'] |
|
else: |
|
messages = ['PARM','IMU'] |
|
|
|
while True: |
|
msg = mlog.recv_match(type=messages) |
|
if msg is None: |
|
break |
|
|
|
if msg.get_type() == 'PARM': |
|
# build up the old coefficients so we can remove the impact of |
|
# existing coefficients from the data |
|
m = re.match("^INS_TCAL(\d)_ENABLE$", msg.Name) |
|
if m: |
|
imu = int(m.group(1))-1 |
|
if stop_capture[imu]: |
|
continue |
|
if msg.Value == 1 and c.enable[imu] == 2: |
|
print("TCAL[%u] enabled" % imu) |
|
stop_capture[imu] = True |
|
continue |
|
if msg.Value == 0 and c.enable[imu] == 1: |
|
print("TCAL[%u] disabled" % imu) |
|
stop_capture[imu] = True |
|
continue |
|
c.set_enable(imu, msg.Value) |
|
m = re.match("^INS_TCAL(\d)_(ACC|GYR)([1-3])_([XYZ])$", msg.Name) |
|
if m: |
|
imu = int(m.group(1))-1 |
|
stype = m.group(2) |
|
p = int(m.group(3)) |
|
axis = m.group(4) |
|
if stop_capture[imu]: |
|
continue |
|
if stype == 'ACC': |
|
c.set_acoeff(imu, axis, p, msg.Value/SCALE_FACTOR) |
|
if stype == 'GYR': |
|
c.set_gcoeff(imu, axis, p, msg.Value/SCALE_FACTOR) |
|
m = re.match("^INS_TCAL(\d)_TMIN$", msg.Name) |
|
if m: |
|
imu = int(m.group(1))-1 |
|
if stop_capture[imu]: |
|
continue |
|
c.set_tmin(imu, msg.Value) |
|
m = re.match("^INS_TCAL(\d)_TMAX", msg.Name) |
|
if m: |
|
imu = int(m.group(1))-1 |
|
if stop_capture[imu]: |
|
continue |
|
c.set_tmax(imu, msg.Value) |
|
m = re.match("^INS_GYR(\d)_CALTEMP", msg.Name) |
|
if m: |
|
imu = int(m.group(1))-1 |
|
if stop_capture[imu]: |
|
continue |
|
c.set_gyro_tcal(imu, msg.Value) |
|
m = re.match("^INS_ACC(\d)_CALTEMP", msg.Name) |
|
if m: |
|
imu = int(m.group(1))-1 |
|
if stop_capture[imu]: |
|
continue |
|
c.set_accel_tcal(imu, msg.Value) |
|
m = re.match("^INS_(ACC|GYR)(\d?)OFFS_([XYZ])$", msg.Name) |
|
if m: |
|
stype = m.group(1) |
|
if m.group(2) == "": |
|
imu = 0 |
|
else: |
|
imu = int(m.group(2))-1 |
|
axis = m.group(3) |
|
if stop_capture[imu]: |
|
continue |
|
if stype == 'ACC': |
|
c.set_aoffset(imu, axis, msg.Value) |
|
if stype == 'GYR': |
|
c.set_goffset(imu, axis, msg.Value) |
|
if msg.Name == 'AHRS_ORIENTATION': |
|
orientation = int(msg.Value) |
|
print("Using orientation %d" % orientation) |
|
|
|
if msg.get_type() == 'TCLR' and args.tclr: |
|
imu = msg.I |
|
|
|
T = msg.Temp |
|
if msg.SType == 0: |
|
# accel |
|
acc = Vector3(msg.X, msg.Y, msg.Z) |
|
time = msg.TimeUS*1.0e-6 |
|
data.add_accel(imu, T, time, acc) |
|
elif msg.SType == 1: |
|
# gyro |
|
gyr = Vector3(msg.X, msg.Y, msg.Z) |
|
time = msg.TimeUS*1.0e-6 |
|
data.add_gyro(imu, T, time, gyr) |
|
|
|
if msg.get_type() == 'IMU' and not args.tclr: |
|
imu = msg.I |
|
|
|
if stop_capture[imu]: |
|
continue |
|
|
|
T = msg.T |
|
acc = Vector3(msg.AccX, msg.AccY, msg.AccZ) |
|
gyr = Vector3(msg.GyrX, msg.GyrY, msg.GyrZ) |
|
|
|
# invert the board orientation rotation. Corrections are in sensor frame |
|
if orientation != 0: |
|
acc = acc.rotate_by_inverse_id(orientation) |
|
gyr = gyr.rotate_by_inverse_id(orientation) |
|
if acc is None or gyr is None: |
|
print("Invalid AHRS_ORIENTATION %u" % orientation) |
|
sys.exit(1) |
|
|
|
if c.enable[imu] == 1: |
|
acc -= c.correction_accel(imu, T) |
|
gyr -= c.correction_gyro(imu, T) |
|
|
|
time = msg.TimeUS*1.0e-6 |
|
data.add_accel(imu, T, time, acc) |
|
data.add_gyro (imu, T, time, gyr) |
|
|
|
if len(data.IMUs()) == 0: |
|
print("No data found") |
|
sys.exit(1) |
|
|
|
print("Loaded %u accel and %u gyro samples" % (len(data.accel[0]['T']),len(data.gyro[0]['T']))) |
|
|
|
if not args.tclr: |
|
# apply moving average filter with 2s width |
|
data.Filter(2) |
|
|
|
clog = c |
|
c = Coefficients() |
|
|
|
calfile = open(args.outfile, "w") |
|
|
|
for imu in data.IMUs(): |
|
tmin = np.amin(data.accel[imu]['T']) |
|
tmax = np.amax(data.accel[imu]['T']) |
|
|
|
c.set_tmin(imu, tmin) |
|
c.set_tmax(imu, tmax) |
|
|
|
for axis in AXES: |
|
if args.online: |
|
fit = OnlineIMUfit() |
|
trel = data.accel[imu]['T'] - TEMP_REF |
|
ofs = data.accel_at_temp(imu, axis, clog.atcal[imu]) |
|
c.set_accel_poly(imu, axis, fit.polyfit(trel, data.accel[imu][axis] - ofs, POLY_ORDER)) |
|
trel = data.gyro[imu]['T'] - TEMP_REF |
|
c.set_gyro_poly(imu, axis, fit.polyfit(trel, data.gyro[imu][axis], POLY_ORDER)) |
|
else: |
|
trel = data.accel[imu]['T'] - TEMP_REF |
|
if imu in clog.atcal: |
|
ofs = data.accel_at_temp(imu, axis, clog.atcal[imu]) |
|
else: |
|
ofs = np.mean(data.accel[imu][axis]) |
|
c.set_accel_poly(imu, axis, np.polyfit(trel, data.accel[imu][axis] - ofs, POLY_ORDER)) |
|
trel = data.gyro[imu]['T'] - TEMP_REF |
|
c.set_gyro_poly(imu, axis, np.polyfit(trel, data.gyro[imu][axis], POLY_ORDER)) |
|
|
|
params = c.param_string(imu) |
|
print(params) |
|
calfile.write(params) |
|
|
|
calfile.close() |
|
print("Calibration written to %s" % args.outfile) |
|
|
|
if args.no_graph: |
|
return |
|
fig, axs = pyplot.subplots(len(data.IMUs()), 1, sharex=True) |
|
|
|
num_imus = len(data.IMUs()) |
|
if num_imus == 1: |
|
axs = [axs] |
|
|
|
for imu in data.IMUs(): |
|
scale = math.degrees(1) |
|
for axis in AXES: |
|
axs[imu].plot(data.gyro[imu]['time'], data.gyro[imu][axis]*scale, label='Uncorrected %s' % axis) |
|
for axis in AXES: |
|
poly = np.poly1d(c.gcoef[imu][axis]) |
|
trel = data.gyro[imu]['T'] - TEMP_REF |
|
correction = poly(trel) |
|
axs[imu].plot(data.gyro[imu]['time'], (data.gyro[imu][axis] - correction)*scale, label='Corrected %s' % axis) |
|
if args.log_parm: |
|
for axis in AXES: |
|
if clog.enable[imu] == 0.0: |
|
print("IMU[%u] disabled in log parms" % imu) |
|
continue |
|
poly = np.poly1d(clog.gcoef[imu][axis]) |
|
correction = poly(data.gyro[imu]['T'] - TEMP_REF) - poly(clog.gtcal[imu] - TEMP_REF) + clog.gofs[imu][axis] |
|
axs[imu].plot(data.gyro[imu]['time'], (data.gyro[imu][axis] - correction)*scale, label='Corrected %s (log parm)' % axis) |
|
ax2 = axs[imu].twinx() |
|
ax2.plot(data.gyro[imu]['time'], data.gyro[imu]['T'], label='Temperature(C)', color='black') |
|
ax2.legend(loc='upper right') |
|
axs[imu].legend(loc='upper left') |
|
axs[imu].set_title('IMU[%u] Gyro (deg/s)' % imu) |
|
|
|
fig, axs = pyplot.subplots(num_imus, 1, sharex=True) |
|
if num_imus == 1: |
|
axs = [axs] |
|
|
|
for imu in data.IMUs(): |
|
for axis in AXES: |
|
ofs = data.accel_at_temp(imu, axis, clog.atcal.get(imu, TEMP_REF)) |
|
axs[imu].plot(data.accel[imu]['time'], data.accel[imu][axis] - ofs, label='Uncorrected %s' % axis) |
|
for axis in AXES: |
|
poly = np.poly1d(c.acoef[imu][axis]) |
|
trel = data.accel[imu]['T'] - TEMP_REF |
|
correction = poly(trel) |
|
ofs = data.accel_at_temp(imu, axis, clog.atcal.get(imu, TEMP_REF)) |
|
axs[imu].plot(data.accel[imu]['time'], (data.accel[imu][axis] - ofs) - correction, label='Corrected %s' % axis) |
|
if args.log_parm: |
|
for axis in AXES: |
|
if clog.enable[imu] == 0.0: |
|
print("IMU[%u] disabled in log parms" % imu) |
|
continue |
|
poly = np.poly1d(clog.acoef[imu][axis]) |
|
ofs = data.accel_at_temp(imu, axis, clog.atcal[imu]) |
|
correction = poly(data.accel[imu]['T'] - TEMP_REF) - poly(clog.atcal[imu] - TEMP_REF) |
|
axs[imu].plot(data.accel[imu]['time'], (data.accel[imu][axis] - ofs) - correction, label='Corrected %s (log parm)' % axis) |
|
ax2 = axs[imu].twinx() |
|
ax2.plot(data.accel[imu]['time'], data.accel[imu]['T'], label='Temperature(C)', color='black') |
|
ax2.legend(loc='upper right') |
|
axs[imu].legend(loc='upper left') |
|
axs[imu].set_title('IMU[%u] Accel (m/s^2)' % imu) |
|
|
|
pyplot.show() |
|
|
|
|
|
|
|
IMUfit(args.log) |
|
|
|
|
|
|