You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
431 lines
16 KiB
431 lines
16 KiB
#include <AP_HAL/AP_HAL.h> |
|
|
|
#if HAL_ENABLE_LIBUAVCAN_DRIVERS |
|
|
|
#include "AP_BattMonitor.h" |
|
#include "AP_BattMonitor_UAVCAN.h" |
|
|
|
#include <AP_CANManager/AP_CANManager.h> |
|
#include <AP_Common/AP_Common.h> |
|
#include <GCS_MAVLink/GCS.h> |
|
#include <AP_Math/AP_Math.h> |
|
#include <AP_UAVCAN/AP_UAVCAN.h> |
|
#include <AP_BoardConfig/AP_BoardConfig.h> |
|
|
|
#include <uavcan/equipment/power/BatteryInfo.hpp> |
|
#include <ardupilot/equipment/power/BatteryInfoAux.hpp> |
|
#include <mppt/Stream.hpp> |
|
#include <mppt/OutputEnable.hpp> |
|
|
|
#define LOG_TAG "BattMon" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AP_BattMonitor_UAVCAN::var_info[] = { |
|
|
|
// @Param: CURR_MULT |
|
// @DisplayName: Scales reported power monitor current |
|
// @Description: Multiplier applied to all current related reports to allow for adjustment if no UAVCAN param access or current splitting applications |
|
// @Range: .1 10 |
|
// @User: Advanced |
|
AP_GROUPINFO("CURR_MULT", 30, AP_BattMonitor_UAVCAN, _curr_mult, 1.0), |
|
|
|
// Param indexes must be between 30 and 39 to avoid conflict with other battery monitor param tables loaded by pointer |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
UC_REGISTRY_BINDER(BattInfoCb, uavcan::equipment::power::BatteryInfo); |
|
UC_REGISTRY_BINDER(BattInfoAuxCb, ardupilot::equipment::power::BatteryInfoAux); |
|
UC_REGISTRY_BINDER(MpptStreamCb, mppt::Stream); |
|
|
|
/// Constructor |
|
AP_BattMonitor_UAVCAN::AP_BattMonitor_UAVCAN(AP_BattMonitor &mon, AP_BattMonitor::BattMonitor_State &mon_state, BattMonitor_UAVCAN_Type type, AP_BattMonitor_Params ¶ms) : |
|
AP_BattMonitor_Backend(mon, mon_state, params), |
|
_type(type) |
|
{ |
|
AP_Param::setup_object_defaults(this,var_info); |
|
_state.var_info = var_info; |
|
|
|
// starts with not healthy |
|
_state.healthy = false; |
|
} |
|
|
|
void AP_BattMonitor_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan) |
|
{ |
|
if (ap_uavcan == nullptr) { |
|
return; |
|
} |
|
|
|
auto* node = ap_uavcan->get_node(); |
|
|
|
uavcan::Subscriber<uavcan::equipment::power::BatteryInfo, BattInfoCb> *battinfo_listener; |
|
battinfo_listener = new uavcan::Subscriber<uavcan::equipment::power::BatteryInfo, BattInfoCb>(*node); |
|
// Backend Msg Handler |
|
const int battinfo_listener_res = battinfo_listener->start(BattInfoCb(ap_uavcan, &handle_battery_info_trampoline)); |
|
if (battinfo_listener_res < 0) { |
|
AP_BoardConfig::allocation_error("UAVCAN BatteryInfo subscriber start problem\n\r"); |
|
return; |
|
} |
|
|
|
uavcan::Subscriber<ardupilot::equipment::power::BatteryInfoAux, BattInfoAuxCb> *battinfo_aux_listener; |
|
battinfo_aux_listener = new uavcan::Subscriber<ardupilot::equipment::power::BatteryInfoAux, BattInfoAuxCb>(*node); |
|
// Backend Msg Handler |
|
const int battinfo_aux_listener_res = battinfo_aux_listener->start(BattInfoAuxCb(ap_uavcan, &handle_battery_info_aux_trampoline)); |
|
if (battinfo_aux_listener_res < 0) { |
|
AP_BoardConfig::allocation_error("UAVCAN BatteryInfoAux subscriber start problem"); |
|
return; |
|
} |
|
|
|
uavcan::Subscriber<mppt::Stream, MpptStreamCb> *mppt_stream_listener; |
|
mppt_stream_listener = new uavcan::Subscriber<mppt::Stream, MpptStreamCb>(*node); |
|
// Backend Msg Handler |
|
const int mppt_stream_listener_res = mppt_stream_listener->start(MpptStreamCb(ap_uavcan, &handle_mppt_stream_trampoline)); |
|
if (mppt_stream_listener_res < 0) { |
|
AP_BoardConfig::allocation_error("UAVCAN Mppt::Stream subscriber start problem"); |
|
return; |
|
} |
|
} |
|
|
|
AP_BattMonitor_UAVCAN* AP_BattMonitor_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id, uint8_t battery_id) |
|
{ |
|
if (ap_uavcan == nullptr) { |
|
return nullptr; |
|
} |
|
for (uint8_t i = 0; i < AP::battery()._num_instances; i++) { |
|
if (AP::battery().drivers[i] == nullptr || |
|
AP::battery().get_type(i) != AP_BattMonitor::Type::UAVCAN_BatteryInfo) { |
|
continue; |
|
} |
|
AP_BattMonitor_UAVCAN* driver = (AP_BattMonitor_UAVCAN*)AP::battery().drivers[i]; |
|
if (driver->_ap_uavcan == ap_uavcan && driver->_node_id == node_id && match_battery_id(i, battery_id)) { |
|
return driver; |
|
} |
|
} |
|
// find empty uavcan driver |
|
for (uint8_t i = 0; i < AP::battery()._num_instances; i++) { |
|
if (AP::battery().drivers[i] != nullptr && |
|
AP::battery().get_type(i) == AP_BattMonitor::Type::UAVCAN_BatteryInfo && |
|
match_battery_id(i, battery_id)) { |
|
|
|
AP_BattMonitor_UAVCAN* batmon = (AP_BattMonitor_UAVCAN*)AP::battery().drivers[i]; |
|
if(batmon->_ap_uavcan != nullptr || batmon->_node_id != 0) { |
|
continue; |
|
} |
|
batmon->_ap_uavcan = ap_uavcan; |
|
batmon->_node_id = node_id; |
|
batmon->_instance = i; |
|
batmon->_node = ap_uavcan->get_node(); |
|
batmon->init(); |
|
AP::can().log_text(AP_CANManager::LOG_INFO, |
|
LOG_TAG, |
|
"Registered BattMonitor Node %d on Bus %d\n", |
|
node_id, |
|
ap_uavcan->get_driver_index()); |
|
return batmon; |
|
} |
|
} |
|
return nullptr; |
|
} |
|
|
|
void AP_BattMonitor_UAVCAN::handle_battery_info(const BattInfoCb &cb) |
|
{ |
|
update_interim_state(cb.msg->voltage, cb.msg->current, cb.msg->temperature, cb.msg->state_of_charge_pct); |
|
|
|
WITH_SEMAPHORE(_sem_battmon); |
|
_remaining_capacity_wh = cb.msg->remaining_capacity_wh; |
|
_full_charge_capacity_wh = cb.msg->full_charge_capacity_wh; |
|
} |
|
|
|
void AP_BattMonitor_UAVCAN::update_interim_state(const float voltage, const float current, const float temperature_K, const uint8_t soc) |
|
{ |
|
WITH_SEMAPHORE(_sem_battmon); |
|
|
|
_interim_state.voltage = voltage; |
|
_interim_state.current_amps = _curr_mult * current; |
|
_soc = soc; |
|
|
|
if (!isnanf(temperature_K) && temperature_K > 0) { |
|
// Temperature reported from battery in kelvin and stored internally in Celsius. |
|
_interim_state.temperature = KELVIN_TO_C(temperature_K); |
|
_interim_state.temperature_time = AP_HAL::millis(); |
|
} |
|
|
|
const uint32_t tnow = AP_HAL::micros(); |
|
|
|
if (!_has_battery_info_aux || _mppt.is_detected) { |
|
const uint32_t dt_us = tnow - _interim_state.last_time_micros; |
|
|
|
// update total current drawn since startup |
|
update_consumed(_interim_state, dt_us); |
|
} |
|
|
|
// record time |
|
_interim_state.last_time_micros = tnow; |
|
_interim_state.healthy = true; |
|
} |
|
|
|
void AP_BattMonitor_UAVCAN::handle_battery_info_aux(const BattInfoAuxCb &cb) |
|
{ |
|
WITH_SEMAPHORE(_sem_battmon); |
|
uint8_t cell_count = MIN(ARRAY_SIZE(_interim_state.cell_voltages.cells), cb.msg->voltage_cell.size()); |
|
float remaining_capacity_ah = _remaining_capacity_wh / cb.msg->nominal_voltage; |
|
float full_charge_capacity_ah = _full_charge_capacity_wh / cb.msg->nominal_voltage; |
|
|
|
_cycle_count = cb.msg->cycle_count; |
|
for (uint8_t i = 0; i < cell_count; i++) { |
|
_interim_state.cell_voltages.cells[i] = cb.msg->voltage_cell[i] * 1000; |
|
} |
|
_interim_state.is_powering_off = cb.msg->is_powering_off; |
|
_interim_state.consumed_mah = (full_charge_capacity_ah - remaining_capacity_ah) * 1000; |
|
_interim_state.consumed_wh = _full_charge_capacity_wh - _remaining_capacity_wh; |
|
_interim_state.time_remaining = is_zero(_interim_state.current_amps) ? 0 : (remaining_capacity_ah / _interim_state.current_amps * 3600); |
|
_interim_state.has_time_remaining = true; |
|
|
|
_has_cell_voltages = true; |
|
_has_time_remaining = true; |
|
_has_consumed_energy = true; |
|
_has_battery_info_aux = true; |
|
} |
|
|
|
void AP_BattMonitor_UAVCAN::handle_mppt_stream(const MpptStreamCb &cb) |
|
{ |
|
const bool use_input_value = (uint32_t(_params._options.get()) & uint32_t(AP_BattMonitor_Params::Options::MPPT_Use_Input_Value)) != 0; |
|
const float voltage = use_input_value ? cb.msg->input_voltage : cb.msg->output_voltage; |
|
const float current = use_input_value ? cb.msg->input_current : cb.msg->output_current; |
|
|
|
// use an invalid soc so we use the library calculated one |
|
const uint8_t soc = 127; |
|
|
|
// convert C to Kelvin |
|
const float temperature_K = isnanf(cb.msg->temperature) ? 0 : C_TO_KELVIN(cb.msg->temperature); |
|
|
|
update_interim_state(voltage, current, temperature_K, soc); |
|
|
|
if (!_mppt.is_detected) { |
|
// this is the first time the mppt message has been received |
|
// so set powered up state |
|
_mppt.is_detected = true; |
|
mppt_set_bootup_powered_state(); |
|
} |
|
|
|
mppt_check_and_report_faults(cb.msg->fault_flags); |
|
} |
|
|
|
void AP_BattMonitor_UAVCAN::handle_battery_info_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const BattInfoCb &cb) |
|
{ |
|
AP_BattMonitor_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, cb.msg->battery_id); |
|
if (driver == nullptr) { |
|
return; |
|
} |
|
driver->handle_battery_info(cb); |
|
} |
|
|
|
void AP_BattMonitor_UAVCAN::handle_battery_info_aux_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const BattInfoAuxCb &cb) |
|
{ |
|
AP_BattMonitor_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, cb.msg->battery_id); |
|
if (driver == nullptr) { |
|
return; |
|
} |
|
driver->handle_battery_info_aux(cb); |
|
} |
|
|
|
void AP_BattMonitor_UAVCAN::handle_mppt_stream_trampoline(AP_UAVCAN* ap_uavcan, uint8_t node_id, const MpptStreamCb &cb) |
|
{ |
|
AP_BattMonitor_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, node_id); |
|
if (driver == nullptr) { |
|
return; |
|
} |
|
driver->handle_mppt_stream(cb); |
|
} |
|
|
|
// read - read the voltage and current |
|
void AP_BattMonitor_UAVCAN::read() |
|
{ |
|
uint32_t tnow = AP_HAL::micros(); |
|
|
|
// timeout after 5 seconds |
|
if ((tnow - _interim_state.last_time_micros) > AP_BATTMONITOR_UAVCAN_TIMEOUT_MICROS) { |
|
_interim_state.healthy = false; |
|
} |
|
// Copy over relevant states over to main state |
|
WITH_SEMAPHORE(_sem_battmon); |
|
_state.temperature = _interim_state.temperature; |
|
_state.temperature_time = _interim_state.temperature_time; |
|
_state.voltage = _interim_state.voltage; |
|
_state.current_amps = _interim_state.current_amps; |
|
_state.consumed_mah = _interim_state.consumed_mah; |
|
_state.consumed_wh = _interim_state.consumed_wh; |
|
_state.last_time_micros = _interim_state.last_time_micros; |
|
_state.healthy = _interim_state.healthy; |
|
_state.time_remaining = _interim_state.time_remaining; |
|
_state.has_time_remaining = _interim_state.has_time_remaining; |
|
_state.is_powering_off = _interim_state.is_powering_off; |
|
memcpy(_state.cell_voltages.cells, _interim_state.cell_voltages.cells, sizeof(_state.cell_voltages)); |
|
|
|
_has_temperature = (AP_HAL::millis() - _state.temperature_time) <= AP_BATT_MONITOR_TIMEOUT; |
|
|
|
// check if MPPT should be powered on/off depending upon arming state |
|
if (_mppt.is_detected) { |
|
mppt_set_armed_powered_state(); |
|
} |
|
} |
|
|
|
/// capacity_remaining_pct - returns true if the percentage is valid and writes to percentage argument |
|
bool AP_BattMonitor_UAVCAN::capacity_remaining_pct(uint8_t &percentage) const |
|
{ |
|
if ((uint32_t(_params._options.get()) & uint32_t(AP_BattMonitor_Params::Options::Ignore_UAVCAN_SoC)) || |
|
_mppt.is_detected || |
|
_soc == 127) { |
|
// a UAVCAN battery monitor may not be able to supply a state of charge. If it can't then |
|
// the user can set the option to use current integration in the backend instead. |
|
// SOC of 127 is used as an invalid SOC flag ie system configuration errors or SOC estimation unavailable |
|
return AP_BattMonitor_Backend::capacity_remaining_pct(percentage); |
|
} |
|
|
|
// the monitor must have current readings in order to estimate consumed_mah and be healthy |
|
if (!has_current() || !_state.healthy) { |
|
return false; |
|
} |
|
|
|
percentage = _soc; |
|
return true; |
|
} |
|
|
|
/// get_cycle_count - return true if cycle count can be provided and fills in cycles argument |
|
bool AP_BattMonitor_UAVCAN::get_cycle_count(uint16_t &cycles) const |
|
{ |
|
if (_has_battery_info_aux) { |
|
cycles = _cycle_count; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// request MPPT board to power on/off at boot as specified by BATT_OPTIONS |
|
void AP_BattMonitor_UAVCAN::mppt_set_bootup_powered_state() |
|
{ |
|
const uint32_t options = uint32_t(_params._options.get()); |
|
const bool on_at_boot = (options & uint32_t(AP_BattMonitor_Params::Options::MPPT_Power_On_At_Boot)) != 0; |
|
const bool off_at_boot = (options & uint32_t(AP_BattMonitor_Params::Options::MPPT_Power_Off_At_Boot)) != 0; |
|
|
|
if (on_at_boot) { |
|
mppt_set_powered_state(true, true); |
|
} else if (off_at_boot) { |
|
mppt_set_powered_state(false, true); |
|
} |
|
} |
|
|
|
// request MPPT board to power on/off depending upon vehicle arming state as specified by BATT_OPTIONS |
|
void AP_BattMonitor_UAVCAN::mppt_set_armed_powered_state() |
|
{ |
|
// check if vehicle armed state has changed |
|
const bool vehicle_armed = hal.util->get_soft_armed(); |
|
if (vehicle_armed == _mppt.vehicle_armed_last) { |
|
return; |
|
} |
|
_mppt.vehicle_armed_last = vehicle_armed; |
|
|
|
// check options for arming state change events |
|
const uint32_t options = uint32_t(_params._options.get()); |
|
const bool power_on_at_arm = (options & uint32_t(AP_BattMonitor_Params::Options::MPPT_Power_On_At_Arm)) != 0; |
|
const bool power_off_at_disarm = (options & uint32_t(AP_BattMonitor_Params::Options::MPPT_Power_Off_At_Disarm)) != 0; |
|
|
|
if (vehicle_armed && power_on_at_arm) { |
|
mppt_set_powered_state(true, false); |
|
} else if (!vehicle_armed && power_off_at_disarm) { |
|
mppt_set_powered_state(false, false); |
|
} |
|
} |
|
|
|
// request MPPT board to power on or off |
|
// power_on should be true to power on the MPPT, false to power off |
|
// force should be true to force sending the state change request to the MPPT |
|
void AP_BattMonitor_UAVCAN::mppt_set_powered_state(bool power_on, bool force) |
|
{ |
|
if (_ap_uavcan == nullptr || _node == nullptr || !_mppt.is_detected) { |
|
return; |
|
} |
|
|
|
// return immediately if already desired state and not forced |
|
if ((_mppt.powered_state == power_on) && !force) { |
|
return; |
|
} |
|
_mppt.powered_state = power_on; |
|
_mppt.powered_state_changed = true; |
|
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Battery %u: powering %s", (unsigned)_instance+1, _mppt.powered_state ? "ON" : "OFF"); |
|
|
|
mppt::OutputEnable::Request request; |
|
request.enable = _mppt.powered_state; |
|
request.disable = !request.enable; |
|
|
|
uavcan::ServiceClient<mppt::OutputEnable> client(*_node); |
|
client.setCallback([](const uavcan::ServiceCallResult<mppt::OutputEnable>& handle_mppt_enable_output_response){}); |
|
client.call(_node_id, request); |
|
} |
|
|
|
// report changes in MPPT faults |
|
void AP_BattMonitor_UAVCAN::mppt_check_and_report_faults(uint8_t fault_flags) |
|
{ |
|
// return immediately if no changes |
|
if (_mppt.fault_flags == fault_flags) { |
|
return; |
|
} |
|
_mppt.fault_flags = fault_flags; |
|
|
|
// handle recovery |
|
if (_mppt.fault_flags == 0) { |
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Battery %u: OK", (unsigned)_instance+1); |
|
return; |
|
} |
|
|
|
// send battery faults via text messages |
|
for (uint8_t fault_bit=0x01; fault_bit <= 0x08; fault_bit <<= 1) { |
|
// this loop is to generate multiple messages if there are multiple concurrent faults, but also run once if there are no faults |
|
if ((fault_bit & fault_flags) != 0) { |
|
const MPPT_FaultFlags err = (MPPT_FaultFlags)fault_bit; |
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Battery %u: %s", (unsigned)_instance+1, mppt_fault_string(err)); |
|
} |
|
} |
|
} |
|
|
|
// returns string description of MPPT fault bit. Only handles single bit faults |
|
const char* AP_BattMonitor_UAVCAN::mppt_fault_string(MPPT_FaultFlags fault) |
|
{ |
|
switch (fault) { |
|
case MPPT_FaultFlags::OVER_VOLTAGE: |
|
return "over voltage"; |
|
case MPPT_FaultFlags::UNDER_VOLTAGE: |
|
return "under voltage"; |
|
case MPPT_FaultFlags::OVER_CURRENT: |
|
return "over current"; |
|
case MPPT_FaultFlags::OVER_TEMPERATURE: |
|
return "over temp"; |
|
} |
|
return "unknown"; |
|
} |
|
|
|
// return mavlink fault bitmask (see MAV_BATTERY_FAULT enum) |
|
uint32_t AP_BattMonitor_UAVCAN::get_mavlink_fault_bitmask() const |
|
{ |
|
// return immediately if not mppt or no faults |
|
if (!_mppt.is_detected || (_mppt.fault_flags == 0)) { |
|
return 0; |
|
} |
|
|
|
// convert mppt fault bitmask to mavlink fault bitmask |
|
uint32_t mav_fault_bitmask = 0; |
|
if ((_mppt.fault_flags & (uint8_t)MPPT_FaultFlags::OVER_VOLTAGE) || (_mppt.fault_flags & (uint8_t)MPPT_FaultFlags::UNDER_VOLTAGE)) { |
|
mav_fault_bitmask |= MAV_BATTERY_FAULT_INCOMPATIBLE_VOLTAGE; |
|
} |
|
if (_mppt.fault_flags & (uint8_t)MPPT_FaultFlags::OVER_CURRENT) { |
|
mav_fault_bitmask |= MAV_BATTERY_FAULT_OVER_CURRENT; |
|
} |
|
if (_mppt.fault_flags & (uint8_t)MPPT_FaultFlags::OVER_TEMPERATURE) { |
|
mav_fault_bitmask |= MAV_BATTERY_FAULT_OVER_TEMPERATURE; |
|
} |
|
return mav_fault_bitmask; |
|
} |
|
|
|
#endif
|
|
|