You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
451 lines
15 KiB
451 lines
15 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#include "AP_GPS.h" |
|
#include "GPS_Backend.h" |
|
#include <AP_Logger/AP_Logger.h> |
|
#include <time.h> |
|
#include <AP_RTC/AP_RTC.h> |
|
#include <AP_InternalError/AP_InternalError.h> |
|
|
|
#define GPS_BACKEND_DEBUGGING 0 |
|
|
|
#if GPS_BACKEND_DEBUGGING |
|
# define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0) |
|
#else |
|
# define Debug(fmt, args ...) |
|
#endif |
|
|
|
#include <GCS_MAVLink/GCS.h> |
|
|
|
#if AP_GPS_DEBUG_LOGGING_ENABLED |
|
#include <AP_Filesystem/AP_Filesystem.h> |
|
#endif |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
AP_GPS_Backend::AP_GPS_Backend(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : |
|
port(_port), |
|
gps(_gps), |
|
state(_state) |
|
{ |
|
state.have_speed_accuracy = false; |
|
state.have_horizontal_accuracy = false; |
|
state.have_vertical_accuracy = false; |
|
} |
|
|
|
int32_t AP_GPS_Backend::swap_int32(int32_t v) const |
|
{ |
|
const uint8_t *b = (const uint8_t *)&v; |
|
union { |
|
int32_t v; |
|
uint8_t b[4]; |
|
} u; |
|
|
|
u.b[0] = b[3]; |
|
u.b[1] = b[2]; |
|
u.b[2] = b[1]; |
|
u.b[3] = b[0]; |
|
|
|
return u.v; |
|
} |
|
|
|
int16_t AP_GPS_Backend::swap_int16(int16_t v) const |
|
{ |
|
const uint8_t *b = (const uint8_t *)&v; |
|
union { |
|
int16_t v; |
|
uint8_t b[2]; |
|
} u; |
|
|
|
u.b[0] = b[1]; |
|
u.b[1] = b[0]; |
|
|
|
return u.v; |
|
} |
|
|
|
|
|
/** |
|
fill in time_week_ms and time_week from BCD date and time components |
|
assumes MTK19 millisecond form of bcd_time |
|
*/ |
|
void AP_GPS_Backend::make_gps_time(uint32_t bcd_date, uint32_t bcd_milliseconds) |
|
{ |
|
struct tm tm {}; |
|
|
|
tm.tm_year = 100U + bcd_date % 100U; |
|
tm.tm_mon = ((bcd_date / 100U) % 100U)-1; |
|
tm.tm_mday = bcd_date / 10000U; |
|
|
|
uint32_t v = bcd_milliseconds; |
|
uint16_t msec = v % 1000U; v /= 1000U; |
|
tm.tm_sec = v % 100U; v /= 100U; |
|
tm.tm_min = v % 100U; v /= 100U; |
|
tm.tm_hour = v % 100U; |
|
|
|
// convert from time structure to unix time |
|
time_t unix_time = AP::rtc().mktime(&tm); |
|
|
|
// convert to time since GPS epoch |
|
const uint32_t unix_to_GPS_secs = 315964800UL; |
|
const uint16_t leap_seconds_unix = GPS_LEAPSECONDS_MILLIS/1000U; |
|
uint32_t ret = unix_time + leap_seconds_unix - unix_to_GPS_secs; |
|
|
|
// get GPS week and time |
|
state.time_week = ret / AP_SEC_PER_WEEK; |
|
state.time_week_ms = (ret % AP_SEC_PER_WEEK) * AP_MSEC_PER_SEC; |
|
state.time_week_ms += msec; |
|
} |
|
|
|
/* |
|
fill in 3D velocity for a GPS that doesn't give vertical velocity numbers |
|
*/ |
|
void AP_GPS_Backend::fill_3d_velocity(void) |
|
{ |
|
float gps_heading = radians(state.ground_course); |
|
|
|
state.velocity.x = state.ground_speed * cosf(gps_heading); |
|
state.velocity.y = state.ground_speed * sinf(gps_heading); |
|
state.velocity.z = 0; |
|
state.have_vertical_velocity = false; |
|
} |
|
|
|
void |
|
AP_GPS_Backend::inject_data(const uint8_t *data, uint16_t len) |
|
{ |
|
// not all backends have valid ports |
|
if (port != nullptr) { |
|
if (port->txspace() > len) { |
|
port->write(data, len); |
|
} else { |
|
Debug("GPS %d: Not enough TXSPACE", state.instance + 1); |
|
} |
|
} |
|
} |
|
|
|
void AP_GPS_Backend::_detection_message(char *buffer, const uint8_t buflen) const |
|
{ |
|
const uint8_t instance = state.instance; |
|
const struct AP_GPS::detect_state dstate = gps.detect_state[instance]; |
|
|
|
if (dstate.auto_detected_baud) { |
|
hal.util->snprintf(buffer, buflen, |
|
"GPS %d: detected as %s at %d baud", |
|
instance + 1, |
|
name(), |
|
int(gps._baudrates[dstate.current_baud])); |
|
} else { |
|
hal.util->snprintf(buffer, buflen, |
|
"GPS %d: specified as %s", |
|
instance + 1, |
|
name()); |
|
} |
|
} |
|
|
|
|
|
void AP_GPS_Backend::broadcast_gps_type() const |
|
{ |
|
char buffer[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1]; |
|
_detection_message(buffer, sizeof(buffer)); |
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s", buffer); |
|
} |
|
|
|
void AP_GPS_Backend::Write_AP_Logger_Log_Startup_messages() const |
|
{ |
|
#if HAL_LOGGING_ENABLED |
|
char buffer[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1]; |
|
_detection_message(buffer, sizeof(buffer)); |
|
AP::logger().Write_Message(buffer); |
|
#endif |
|
} |
|
|
|
bool AP_GPS_Backend::should_log() const |
|
{ |
|
return gps.should_log(); |
|
} |
|
|
|
|
|
void AP_GPS_Backend::send_mavlink_gps_rtk(mavlink_channel_t chan) |
|
{ |
|
#if HAL_GCS_ENABLED |
|
const uint8_t instance = state.instance; |
|
// send status |
|
switch (instance) { |
|
case 0: |
|
mavlink_msg_gps_rtk_send(chan, |
|
0, // Not implemented yet |
|
0, // Not implemented yet |
|
state.rtk_week_number, |
|
state.rtk_time_week_ms, |
|
0, // Not implemented yet |
|
0, // Not implemented yet |
|
state.rtk_num_sats, |
|
state.rtk_baseline_coords_type, |
|
state.rtk_baseline_x_mm, |
|
state.rtk_baseline_y_mm, |
|
state.rtk_baseline_z_mm, |
|
state.rtk_accuracy, |
|
state.rtk_iar_num_hypotheses); |
|
break; |
|
case 1: |
|
mavlink_msg_gps2_rtk_send(chan, |
|
0, // Not implemented yet |
|
0, // Not implemented yet |
|
state.rtk_week_number, |
|
state.rtk_time_week_ms, |
|
0, // Not implemented yet |
|
0, // Not implemented yet |
|
state.rtk_num_sats, |
|
state.rtk_baseline_coords_type, |
|
state.rtk_baseline_x_mm, |
|
state.rtk_baseline_y_mm, |
|
state.rtk_baseline_z_mm, |
|
state.rtk_accuracy, |
|
state.rtk_iar_num_hypotheses); |
|
break; |
|
} |
|
#endif |
|
} |
|
|
|
|
|
/* |
|
set a timestamp based on arrival time on uart at current byte, |
|
assuming the message started nbytes ago |
|
*/ |
|
void AP_GPS_Backend::set_uart_timestamp(uint16_t nbytes) |
|
{ |
|
if (port) { |
|
state.last_corrected_gps_time_us = port->receive_time_constraint_us(nbytes); |
|
state.corrected_timestamp_updated = true; |
|
} |
|
} |
|
|
|
|
|
void AP_GPS_Backend::check_new_itow(uint32_t itow, uint32_t msg_length) |
|
{ |
|
if (itow != _last_itow_ms) { |
|
_last_itow_ms = itow; |
|
|
|
/* |
|
we need to calculate a pseudo-itow, which copes with the |
|
iTow from the GPS changing in unexpected ways. We assume |
|
that timestamps from the GPS are always in multiples of |
|
50ms. That means we can't handle a GPS with an update rate |
|
of more than 20Hz. We could do more, but we'd need the GPS |
|
poll time to be higher |
|
*/ |
|
const uint32_t gps_min_period_ms = 50; |
|
|
|
// get the time the packet arrived on the UART |
|
uint64_t uart_us; |
|
if (_last_pps_time_us != 0 && (state.status >= AP_GPS::GPS_OK_FIX_2D)) { |
|
// pps is only reliable when we have some sort of GPS fix |
|
uart_us = _last_pps_time_us; |
|
_last_pps_time_us = 0; |
|
} else if (port) { |
|
uart_us = port->receive_time_constraint_us(msg_length); |
|
} else { |
|
uart_us = AP_HAL::micros64(); |
|
} |
|
|
|
uint32_t now = AP_HAL::millis(); |
|
uint32_t dt_ms = now - _last_ms; |
|
_last_ms = now; |
|
|
|
// round to nearest 50ms period |
|
dt_ms = ((dt_ms + (gps_min_period_ms/2)) / gps_min_period_ms) * gps_min_period_ms; |
|
|
|
// work out an actual message rate. If we get 5 messages in a |
|
// row with a new rate we switch rate |
|
if (_last_rate_ms == dt_ms) { |
|
if (_rate_counter < 5) { |
|
_rate_counter++; |
|
} else if (_rate_ms != dt_ms) { |
|
_rate_ms = dt_ms; |
|
} |
|
} else { |
|
_rate_counter = 0; |
|
_last_rate_ms = dt_ms; |
|
if (_rate_ms != 0) { |
|
set_pps_desired_freq(1000/_rate_ms); |
|
} |
|
} |
|
if (_rate_ms == 0) { |
|
// only allow 5Hz to 20Hz in user config |
|
_rate_ms = constrain_int16(gps.get_rate_ms(state.instance), 50, 200); |
|
} |
|
|
|
// round to calculated message rate |
|
dt_ms = ((dt_ms + (_rate_ms/2)) / _rate_ms) * _rate_ms; |
|
|
|
// calculate pseudo-itow |
|
_pseudo_itow += dt_ms * 1000U; |
|
|
|
// use msg arrival time, and correct for jitter |
|
uint64_t local_us = jitter_correction.correct_offboard_timestamp_usec(_pseudo_itow, uart_us); |
|
state.last_corrected_gps_time_us = local_us; |
|
state.corrected_timestamp_updated = true; |
|
|
|
// look for lagged data from the GPS. This is meant to detect |
|
// the case that the GPS is trying to push more data into the |
|
// UART than can fit (eg. with GPS_RAW_DATA at 115200). |
|
float expected_lag; |
|
if (gps.get_lag(state.instance, expected_lag)) { |
|
float lag_s = (now - (state.last_corrected_gps_time_us/1000U)) * 0.001; |
|
if (lag_s > expected_lag+0.05) { |
|
// more than 50ms over expected lag, increment lag counter |
|
state.lagged_sample_count++; |
|
} else { |
|
state.lagged_sample_count = 0; |
|
} |
|
} |
|
if (state.status >= AP_GPS::GPS_OK_FIX_2D) { |
|
// we must have a decent fix to calculate difference between itow and pseudo-itow |
|
_pseudo_itow_delta_ms = itow - (_pseudo_itow/1000ULL); |
|
} |
|
} |
|
} |
|
|
|
#if GPS_MOVING_BASELINE |
|
bool AP_GPS_Backend::calculate_moving_base_yaw(float reported_heading_deg, const float reported_distance, const float reported_D) { |
|
return calculate_moving_base_yaw(state, reported_heading_deg, reported_distance, reported_D); |
|
} |
|
|
|
bool AP_GPS_Backend::calculate_moving_base_yaw(AP_GPS::GPS_State &interim_state, const float reported_heading_deg, const float reported_distance, const float reported_D) { |
|
constexpr float minimum_antenna_seperation = 0.05; // meters |
|
constexpr float permitted_error_length_pct = 0.2; // percentage |
|
|
|
bool selectedOffset = false; |
|
Vector3f offset; |
|
switch (MovingBase::Type(gps.mb_params[interim_state.instance].type.get())) { |
|
case MovingBase::Type::RelativeToAlternateInstance: |
|
offset = gps._antenna_offset[interim_state.instance^1].get() - gps._antenna_offset[interim_state.instance].get(); |
|
selectedOffset = true; |
|
break; |
|
case MovingBase::Type::RelativeToCustomBase: |
|
offset = gps.mb_params[interim_state.instance].base_offset.get(); |
|
selectedOffset = true; |
|
break; |
|
} |
|
|
|
if (!selectedOffset) { |
|
// invalid type, let's throw up a flag |
|
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); |
|
goto bad_yaw; |
|
} |
|
|
|
{ |
|
const float offset_dist = offset.length(); |
|
const float min_dist = MIN(offset_dist, reported_distance); |
|
|
|
if (offset_dist < minimum_antenna_seperation) { |
|
// offsets have to be sufficently large to get a meaningful angle off of them |
|
Debug("Insufficent antenna offset (%f, %f, %f)", (double)offset.x, (double)offset.y, (double)offset.z); |
|
goto bad_yaw; |
|
} |
|
|
|
if (reported_distance < minimum_antenna_seperation) { |
|
// if the reported distance is less then the minimum seperation it's not sufficently robust |
|
Debug("Reported baseline distance (%f) was less then the minimum antenna seperation (%f)", |
|
(double)reported_distance, (double)minimum_antenna_seperation); |
|
goto bad_yaw; |
|
} |
|
|
|
|
|
if ((offset_dist - reported_distance) > (min_dist * permitted_error_length_pct)) { |
|
// the magnitude of the vector is much further then we were expecting |
|
Debug("Exceeded the permitted error margin %f > %f", |
|
(double)(offset_dist - reported_distance), (double)(min_dist * permitted_error_length_pct)); |
|
goto bad_yaw; |
|
} |
|
|
|
#ifndef HAL_BUILD_AP_PERIPH |
|
{ |
|
// get lag |
|
float lag = 0.1; |
|
get_lag(lag); |
|
|
|
// get vehicle rotation, projected back in time using the gyro |
|
// this is not 100% accurate, but it is good enough for |
|
// this test. To do it completely accurately we'd need an |
|
// interface into DCM, EKF2 and EKF3 to ask for a |
|
// historical attitude. That is far too complex to justify |
|
// for this use case |
|
const auto &ahrs = AP::ahrs(); |
|
const Vector3f &gyro = ahrs.get_gyro(); |
|
Matrix3f rot_body_to_ned = ahrs.get_rotation_body_to_ned(); |
|
rot_body_to_ned.rotate(gyro * (-lag)); |
|
|
|
// apply rotation to the offset to get the Z offset in NED |
|
const Vector3f antenna_tilt = rot_body_to_ned * offset; |
|
const float alt_error = reported_D + antenna_tilt.z; |
|
|
|
if (fabsf(alt_error) > permitted_error_length_pct * min_dist) { |
|
// the vertical component is out of range, reject it |
|
goto bad_yaw; |
|
} |
|
} |
|
#endif // HAL_BUILD_AP_PERIPH |
|
|
|
{ |
|
// at this point the offsets are looking okay, go ahead and actually calculate a useful heading |
|
const float rotation_offset_rad = Vector2f(-offset.x, -offset.y).angle(); |
|
interim_state.gps_yaw = wrap_360(reported_heading_deg - degrees(rotation_offset_rad)); |
|
interim_state.have_gps_yaw = true; |
|
interim_state.gps_yaw_time_ms = AP_HAL::millis(); |
|
} |
|
} |
|
|
|
return true; |
|
|
|
bad_yaw: |
|
interim_state.have_gps_yaw = false; |
|
return false; |
|
} |
|
#endif // GPS_MOVING_BASELINE |
|
|
|
#if AP_GPS_DEBUG_LOGGING_ENABLED |
|
|
|
// log some data for debugging |
|
void AP_GPS_Backend::log_data(const uint8_t *data, uint16_t length) |
|
{ |
|
logging.buf.write(data, length); |
|
if (!logging.io_registered) { |
|
logging.io_registered = true; |
|
hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&AP_GPS_Backend::logging_update, void)); |
|
} |
|
} |
|
|
|
// IO thread update, writing to log file |
|
void AP_GPS_Backend::logging_update(void) |
|
{ |
|
if (logging.fd == -1) { |
|
char fname[] = "gpsN.log"; |
|
fname[3] = '1' + state.instance; |
|
logging.fd = AP::FS().open(fname, O_WRONLY|O_CREAT|O_APPEND); |
|
} |
|
if (logging.fd != -1) { |
|
uint32_t n = 0; |
|
const uint8_t *p = logging.buf.readptr(n); |
|
if (p != nullptr && n != 0) { |
|
int32_t written = AP::FS().write(logging.fd, p, n); |
|
if (written > 0) { |
|
logging.buf.advance(written); |
|
AP::FS().fsync(logging.fd); |
|
} |
|
} |
|
} |
|
} |
|
#endif // AP_GPS_DEBUG_LOGGING_ENABLED
|
|
|