You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
532 lines
13 KiB
532 lines
13 KiB
/* |
|
* Copyright (C) Siddharth Bharat Purohit 2017 |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
wrappers for allocation functions |
|
|
|
Relies on linker wrap options |
|
|
|
Note that not all functions that have been wrapped are implemented |
|
here. The others are wrapped to ensure the function is not used |
|
without an implementation. If we need them then we can implement as |
|
needed. |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <string.h> |
|
#include <hal.h> |
|
#include <ch.h> |
|
#include <stdarg.h> |
|
#include <stdint.h> |
|
#include "stm32_util.h" |
|
|
|
#ifdef HAL_CHIBIOS_ENABLE_MALLOC_GUARD |
|
#pragma GCC optimize("Og") |
|
#endif |
|
|
|
#define MEM_REGION_FLAG_DMA_OK 1 |
|
#define MEM_REGION_FLAG_FAST 2 |
|
#define MEM_REGION_FLAG_AXI_BUS 4 |
|
|
|
#ifdef HAL_CHIBIOS_ENABLE_MALLOC_GUARD |
|
static mutex_t mem_mutex; |
|
#endif |
|
|
|
static const struct memory_region memory_regions[] = { HAL_MEMORY_REGIONS }; |
|
// the first memory region is already setup as the ChibiOS |
|
// default heap, so we will index from 1 in the allocators |
|
#define NUM_MEMORY_REGIONS (sizeof(memory_regions)/sizeof(memory_regions[0])) |
|
|
|
#if CH_CFG_USE_HEAP == TRUE |
|
|
|
static memory_heap_t heaps[NUM_MEMORY_REGIONS]; |
|
|
|
#define MIN_ALIGNMENT 8U |
|
|
|
#if defined(STM32H7) |
|
#define DMA_ALIGNMENT 32U |
|
#else |
|
#define DMA_ALIGNMENT 8U |
|
#endif |
|
|
|
// size of memory reserved for dma-capable alloc |
|
#ifndef DMA_RESERVE_SIZE |
|
#define DMA_RESERVE_SIZE 6144 |
|
#endif |
|
|
|
#if DMA_RESERVE_SIZE != 0 |
|
static memory_heap_t dma_reserve_heap; |
|
#endif |
|
|
|
/* |
|
initialise memory handling |
|
*/ |
|
void malloc_init(void) |
|
{ |
|
#ifdef HAL_CHIBIOS_ENABLE_MALLOC_GUARD |
|
chMtxObjectInit(&mem_mutex); |
|
#endif |
|
|
|
#if defined(STM32H7) |
|
// zero first 1k of ITCM. We leave 1k free to avoid addresses |
|
// close to nullptr being valid. Zeroing it here means we can |
|
// check for changes which indicate a write to an uninitialised |
|
// object. We start at address 0x1 as writing the first byte |
|
// causes a fault |
|
memset((void*)0x00000001, 0, 1023); |
|
#endif |
|
|
|
uint8_t i; |
|
for (i=1; i<NUM_MEMORY_REGIONS; i++) { |
|
chHeapObjectInit(&heaps[i], memory_regions[i].address, memory_regions[i].size); |
|
} |
|
|
|
#if DMA_RESERVE_SIZE != 0 |
|
/* |
|
create a DMA reserve heap, to ensure we keep some memory for DMA |
|
safe memory allocations |
|
*/ |
|
uint32_t reserve_size = DMA_RESERVE_SIZE; |
|
while (reserve_size > 0) { |
|
void *dma_reserve = malloc_dma(reserve_size); |
|
if (dma_reserve != NULL) { |
|
chHeapObjectInit(&dma_reserve_heap, dma_reserve, reserve_size); |
|
break; |
|
} |
|
reserve_size = (reserve_size * 7) / 8; |
|
} |
|
#endif |
|
} |
|
|
|
/* |
|
allocate memory, using flags from MEM_REGION_FLAG_* to determine |
|
memory type |
|
*/ |
|
static void *malloc_flags(size_t size, uint32_t flags) |
|
{ |
|
if (size == 0) { |
|
return NULL; |
|
} |
|
const uint8_t dma_flags = (MEM_REGION_FLAG_DMA_OK | MEM_REGION_FLAG_AXI_BUS); |
|
const uint8_t alignment = (flags&dma_flags?DMA_ALIGNMENT:MIN_ALIGNMENT); |
|
void *p = NULL; |
|
uint8_t i; |
|
|
|
if (flags & dma_flags) { |
|
// allocate multiple of DMA alignment |
|
size = (size + (DMA_ALIGNMENT-1)) & ~(DMA_ALIGNMENT-1); |
|
} |
|
|
|
// if no flags are set or this is a DMA request and default heap |
|
// is DMA safe then start with default heap |
|
if (flags == 0 || (flags == MEM_REGION_FLAG_DMA_OK && |
|
(memory_regions[0].flags & MEM_REGION_FLAG_DMA_OK))) { |
|
p = chHeapAllocAligned(NULL, size, alignment); |
|
if (p) { |
|
goto found; |
|
} |
|
} |
|
|
|
// try with matching flags |
|
for (i=1; i<NUM_MEMORY_REGIONS; i++) { |
|
if ((flags & MEM_REGION_FLAG_DMA_OK) && |
|
!(memory_regions[i].flags & MEM_REGION_FLAG_DMA_OK)) { |
|
continue; |
|
} |
|
if ((flags & MEM_REGION_FLAG_AXI_BUS) && |
|
!(memory_regions[i].flags & MEM_REGION_FLAG_AXI_BUS)) { |
|
continue; |
|
} |
|
if ((flags & MEM_REGION_FLAG_FAST) && |
|
!(memory_regions[i].flags & MEM_REGION_FLAG_FAST)) { |
|
continue; |
|
} |
|
p = chHeapAllocAligned(&heaps[i], size, alignment); |
|
if (p) { |
|
goto found; |
|
} |
|
} |
|
|
|
// if this is a not a DMA request then we can fall back to any heap |
|
if (!(flags & dma_flags)) { |
|
for (i=1; i<NUM_MEMORY_REGIONS; i++) { |
|
p = chHeapAllocAligned(&heaps[i], size, alignment); |
|
if (p) { |
|
goto found; |
|
} |
|
} |
|
// try default heap |
|
p = chHeapAllocAligned(NULL, size, alignment); |
|
if (p) { |
|
goto found; |
|
} |
|
} |
|
|
|
#if DMA_RESERVE_SIZE != 0 |
|
// fall back to DMA reserve |
|
p = chHeapAllocAligned(&dma_reserve_heap, size, alignment); |
|
if (p) { |
|
memset(p, 0, size); |
|
return p; |
|
} |
|
#endif |
|
|
|
// failed |
|
return NULL; |
|
|
|
found: |
|
memset(p, 0, size); |
|
return p; |
|
} |
|
|
|
#ifdef HAL_CHIBIOS_ENABLE_MALLOC_GUARD |
|
/* |
|
memory guard system. We put all allocated memory in a doubly linked |
|
list and add canary bytes at the front and back of all |
|
allocations. On all free operations, plus on calls to malloc_check() |
|
we walk the list and check for memory corruption, flagging an |
|
internal error if one is found |
|
*/ |
|
struct memguard { |
|
uint32_t size; |
|
uint32_t inv_size; |
|
struct memguard *next, *prev; |
|
uint32_t pad[4]; // pad to 32 bytes |
|
}; |
|
static struct memguard *mg_head; |
|
|
|
#define MALLOC_HEAD_SIZE sizeof(struct memguard) |
|
#define MALLOC_GUARD_SIZE DMA_ALIGNMENT |
|
#define MALLOC_GUARD1_START 73 |
|
#define MALLOC_GUARD2_START 172 |
|
|
|
/* |
|
optional malloc guard regions |
|
*/ |
|
static void *malloc_flags_guard(size_t size, uint32_t flags) |
|
{ |
|
chMtxLock(&mem_mutex); |
|
|
|
if (flags & (MEM_REGION_FLAG_DMA_OK | MEM_REGION_FLAG_AXI_BUS)) { |
|
size = (size + (DMA_ALIGNMENT-1U)) & ~(DMA_ALIGNMENT-1U); |
|
} else { |
|
size = (size + (MIN_ALIGNMENT-1U)) & ~(MIN_ALIGNMENT-1U); |
|
} |
|
void *ret = malloc_flags(size+MALLOC_GUARD_SIZE*2+MALLOC_HEAD_SIZE, flags); |
|
if (!ret) { |
|
chMtxUnlock(&mem_mutex); |
|
return NULL; |
|
} |
|
struct memguard *mg = (struct memguard *)ret; |
|
uint8_t *b1 = (uint8_t *)&mg[1]; |
|
uint8_t *b2 = b1 + MALLOC_GUARD_SIZE + size; |
|
mg->size = size; |
|
mg->inv_size = ~size; |
|
for (uint32_t i=0; i<MALLOC_GUARD_SIZE; i++) { |
|
b1[i] = (uint8_t)(MALLOC_GUARD1_START + i); |
|
b2[i] = (uint8_t)(MALLOC_GUARD2_START + i); |
|
} |
|
|
|
if (mg_head != NULL) { |
|
mg->next = mg_head; |
|
mg_head->prev = mg; |
|
} |
|
mg_head = mg; |
|
|
|
chMtxUnlock(&mem_mutex); |
|
return (void *)(b1+MALLOC_GUARD_SIZE); |
|
} |
|
|
|
extern void AP_memory_guard_error(uint32_t size); |
|
|
|
/* |
|
check for errors in malloc memory using guard bytes |
|
*/ |
|
void malloc_check_mg(const struct memguard *mg) |
|
{ |
|
if (mg->size != ~mg->inv_size) { |
|
AP_memory_guard_error(0); |
|
return; |
|
} |
|
const uint32_t size = mg->size; |
|
const uint8_t *b1 = (uint8_t *)&mg[1]; |
|
const uint8_t *b2 = b1 + MALLOC_GUARD_SIZE + size; |
|
for (uint32_t i=0; i<MALLOC_GUARD_SIZE; i++) { |
|
if (b1[i] != (uint8_t)(MALLOC_GUARD1_START + i) || |
|
b2[i] != (uint8_t)(MALLOC_GUARD2_START + i)) { |
|
AP_memory_guard_error(size); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
check for errors across entire allocation list |
|
*/ |
|
void malloc_check_all(void) |
|
{ |
|
for (struct memguard *mg=mg_head; mg; mg=mg->next) { |
|
malloc_check_mg(mg); |
|
} |
|
} |
|
|
|
/* |
|
check for errors in malloc memory using guard bytes |
|
*/ |
|
void malloc_check(const void *p) |
|
{ |
|
if (p == NULL) { |
|
// allow for malloc_check(nullptr) to check all allocated memory |
|
chMtxLock(&mem_mutex); |
|
malloc_check_all(); |
|
chMtxUnlock(&mem_mutex); |
|
return; |
|
} |
|
if (((uintptr_t)p) & 3) { |
|
// misaligned memory |
|
AP_memory_guard_error(0); |
|
return; |
|
} |
|
chMtxLock(&mem_mutex); |
|
struct memguard *mg = (struct memguard *)(((uint8_t *)p) - (MALLOC_GUARD_SIZE+MALLOC_HEAD_SIZE)); |
|
malloc_check_mg(mg); |
|
malloc_check_all(); |
|
chMtxUnlock(&mem_mutex); |
|
} |
|
|
|
static void free_guard(void *p) |
|
{ |
|
chMtxLock(&mem_mutex); |
|
malloc_check(p); |
|
struct memguard *mg = (struct memguard *)(((uint8_t *)p) - (MALLOC_GUARD_SIZE+MALLOC_HEAD_SIZE)); |
|
if (mg->next) { |
|
mg->next->prev = mg->prev; |
|
} |
|
if (mg->prev) { |
|
mg->prev->next = mg->next; |
|
} |
|
if (mg == mg_head) { |
|
mg_head = mg->next; |
|
} |
|
chHeapFree((void*)(((uint8_t *)p) - (MALLOC_GUARD_SIZE+MALLOC_HEAD_SIZE))); |
|
chMtxUnlock(&mem_mutex); |
|
} |
|
|
|
#define malloc_flags(size, flags) malloc_flags_guard(size, flags) |
|
|
|
#else // HAL_CHIBIOS_ENABLE_MALLOC_GUARD |
|
|
|
void malloc_check(const void *p) |
|
{ |
|
(void)p; |
|
} |
|
#endif // HAL_CHIBIOS_ENABLE_MALLOC_GUARD |
|
|
|
|
|
|
|
/* |
|
allocate normal memory |
|
*/ |
|
void *malloc(size_t size) |
|
{ |
|
return malloc_flags(size, 0); |
|
} |
|
|
|
/* |
|
allocate DMA-safe memory |
|
*/ |
|
void *malloc_dma(size_t size) |
|
{ |
|
return malloc_flags(size, MEM_REGION_FLAG_DMA_OK); |
|
} |
|
|
|
/* |
|
allocate from memory connected to AXI Bus if available |
|
else just allocate dma safe memory |
|
*/ |
|
void *malloc_axi_sram(size_t size) |
|
{ |
|
#if defined(STM32H7) |
|
return malloc_flags(size, MEM_REGION_FLAG_AXI_BUS); |
|
#else |
|
return malloc_flags(size, MEM_REGION_FLAG_DMA_OK); |
|
#endif |
|
} |
|
|
|
/* |
|
allocate fast memory |
|
*/ |
|
void *malloc_fastmem(size_t size) |
|
{ |
|
return malloc_flags(size, MEM_REGION_FLAG_FAST); |
|
} |
|
|
|
void *calloc(size_t nmemb, size_t size) |
|
{ |
|
return malloc(nmemb * size); |
|
} |
|
|
|
void free(void *ptr) |
|
{ |
|
if(ptr != NULL) { |
|
#ifdef HAL_CHIBIOS_ENABLE_MALLOC_GUARD |
|
free_guard(ptr); |
|
#else |
|
chHeapFree(ptr); |
|
#endif |
|
} |
|
} |
|
|
|
/* |
|
return total available memory in bytes |
|
*/ |
|
size_t mem_available(void) |
|
{ |
|
size_t totalp = 0; |
|
uint8_t i; |
|
|
|
// get memory available on main heap |
|
chHeapStatus(NULL, &totalp, NULL); |
|
|
|
// we also need to add in memory that is not yet allocated to the heap |
|
totalp += chCoreGetStatusX(); |
|
|
|
// now our own heaps |
|
for (i=1; i<NUM_MEMORY_REGIONS; i++) { |
|
size_t available = 0; |
|
chHeapStatus(&heaps[i], &available, NULL); |
|
totalp += available; |
|
} |
|
|
|
#if DMA_RESERVE_SIZE != 0 |
|
// and reserve DMA heap |
|
size_t available = 0; |
|
chHeapStatus(&dma_reserve_heap, &available, NULL); |
|
totalp += available; |
|
#endif |
|
|
|
return totalp; |
|
} |
|
|
|
#if CH_CFG_USE_DYNAMIC == TRUE |
|
/* |
|
allocate a thread on any available heap |
|
*/ |
|
thread_t *thread_create_alloc(size_t size, |
|
const char *name, tprio_t prio, |
|
tfunc_t pf, void *arg) |
|
{ |
|
thread_t *ret; |
|
// first try default heap |
|
ret = chThdCreateFromHeap(NULL, size, name, prio, pf, arg); |
|
if (ret != NULL) { |
|
return ret; |
|
} |
|
|
|
// now try other heaps |
|
uint8_t i; |
|
for (i=1; i<NUM_MEMORY_REGIONS; i++) { |
|
ret = chThdCreateFromHeap(&heaps[i], size, name, prio, pf, arg); |
|
if (ret != NULL) { |
|
return ret; |
|
} |
|
} |
|
return NULL; |
|
} |
|
#endif |
|
|
|
/* |
|
return heap information |
|
*/ |
|
uint8_t malloc_get_heaps(memory_heap_t **_heaps, const struct memory_region **regions) |
|
{ |
|
*_heaps = &heaps[0]; |
|
*regions = &memory_regions[0]; |
|
return NUM_MEMORY_REGIONS; |
|
} |
|
|
|
#endif // CH_CFG_USE_HEAP |
|
|
|
|
|
/* |
|
flush all memory. Used in chSysHalt() |
|
*/ |
|
void memory_flush_all(void) |
|
{ |
|
uint8_t i; |
|
for (i=0; i<NUM_MEMORY_REGIONS; i++) { |
|
stm32_cacheBufferFlush(memory_regions[i].address, memory_regions[i].size); |
|
} |
|
} |
|
|
|
/* |
|
replacement for strdup |
|
*/ |
|
char *strdup(const char *str) |
|
{ |
|
const size_t len = strlen(str); |
|
char *ret = malloc(len+1); |
|
if (!ret) { |
|
return NULL; |
|
} |
|
memcpy(ret, str, len); |
|
ret[len] = 0; |
|
return ret; |
|
} |
|
|
|
/* |
|
is valid memory region |
|
*/ |
|
bool is_address_in_memory(void *addr) |
|
{ |
|
uint8_t i; |
|
for (i=0; i<NUM_MEMORY_REGIONS; i++) { |
|
if (addr >= memory_regions[i].address && |
|
addr < (memory_regions[i].address + memory_regions[i].size)) { |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
/* |
|
return the start of memory region that contains the address |
|
*/ |
|
void* get_addr_mem_region_start_addr(void *addr) |
|
{ |
|
uint8_t i; |
|
for (i=0; i<NUM_MEMORY_REGIONS; i++) { |
|
if (addr >= memory_regions[i].address && |
|
addr < (memory_regions[i].address + memory_regions[i].size)) { |
|
return memory_regions[i].address; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/* |
|
return the end of memory region that contains the address |
|
*/ |
|
void* get_addr_mem_region_end_addr(void *addr) |
|
{ |
|
uint8_t i; |
|
for (i=0; i<NUM_MEMORY_REGIONS; i++) { |
|
if (addr >= memory_regions[i].address && |
|
addr < (memory_regions[i].address + memory_regions[i].size)) { |
|
return memory_regions[i].address + memory_regions[i].size; |
|
} |
|
} |
|
return 0; |
|
}
|
|
|