You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
785 lines
26 KiB
785 lines
26 KiB
#define AP_INLINE_VECTOR_OPS |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
#include "AP_InertialSensor.h" |
|
#include "AP_InertialSensor_Backend.h" |
|
#include <AP_Logger/AP_Logger.h> |
|
#include <AP_BoardConfig/AP_BoardConfig.h> |
|
#if AP_MODULE_SUPPORTED |
|
#include <AP_Module/AP_Module.h> |
|
#endif |
|
#include <stdio.h> |
|
|
|
#define SENSOR_RATE_DEBUG 0 |
|
|
|
const extern AP_HAL::HAL& hal; |
|
|
|
AP_InertialSensor_Backend::AP_InertialSensor_Backend(AP_InertialSensor &imu) : |
|
_imu(imu) |
|
{ |
|
} |
|
|
|
/* |
|
notify of a FIFO reset so we don't use bad data to update observed sensor rate |
|
*/ |
|
void AP_InertialSensor_Backend::notify_accel_fifo_reset(uint8_t instance) |
|
{ |
|
_imu._sample_accel_count[instance] = 0; |
|
_imu._sample_accel_start_us[instance] = 0; |
|
} |
|
|
|
/* |
|
notify of a FIFO reset so we don't use bad data to update observed sensor rate |
|
*/ |
|
void AP_InertialSensor_Backend::notify_gyro_fifo_reset(uint8_t instance) |
|
{ |
|
_imu._sample_gyro_count[instance] = 0; |
|
_imu._sample_gyro_start_us[instance] = 0; |
|
} |
|
|
|
// set the amount of oversamping a accel is doing |
|
void AP_InertialSensor_Backend::_set_accel_oversampling(uint8_t instance, uint8_t n) |
|
{ |
|
_imu._accel_over_sampling[instance] = n; |
|
} |
|
|
|
// set the amount of oversamping a gyro is doing |
|
void AP_InertialSensor_Backend::_set_gyro_oversampling(uint8_t instance, uint8_t n) |
|
{ |
|
_imu._gyro_over_sampling[instance] = n; |
|
} |
|
|
|
/* |
|
update the sensor rate for FIFO sensors |
|
|
|
FIFO sensors produce samples at a fixed rate, but the clock in the |
|
sensor may vary slightly from the system clock. This slowly adjusts |
|
the rate to the observed rate |
|
*/ |
|
void AP_InertialSensor_Backend::_update_sensor_rate(uint16_t &count, uint32_t &start_us, float &rate_hz) const |
|
{ |
|
uint32_t now = AP_HAL::micros(); |
|
if (start_us == 0) { |
|
count = 0; |
|
start_us = now; |
|
} else { |
|
count++; |
|
if (now - start_us > 1000000UL) { |
|
float observed_rate_hz = count * 1.0e6f / (now - start_us); |
|
#if 0 |
|
printf("IMU RATE: %.1f should be %.1f\n", observed_rate_hz, rate_hz); |
|
#endif |
|
float filter_constant = 0.98f; |
|
float upper_limit = 1.05f; |
|
float lower_limit = 0.95f; |
|
if (sensors_converging()) { |
|
// converge quickly for first 30s, then more slowly |
|
filter_constant = 0.8f; |
|
upper_limit = 2.0f; |
|
lower_limit = 0.5f; |
|
} |
|
observed_rate_hz = constrain_float(observed_rate_hz, rate_hz*lower_limit, rate_hz*upper_limit); |
|
rate_hz = filter_constant * rate_hz + (1-filter_constant) * observed_rate_hz; |
|
count = 0; |
|
start_us = now; |
|
} |
|
} |
|
} |
|
|
|
void AP_InertialSensor_Backend::_rotate_and_correct_accel(uint8_t instance, Vector3f &accel) |
|
{ |
|
/* |
|
accel calibration is always done in sensor frame with this |
|
version of the code. That means we apply the rotation after the |
|
offsets and scaling. |
|
*/ |
|
|
|
// rotate for sensor orientation |
|
accel.rotate(_imu._accel_orientation[instance]); |
|
|
|
#if HAL_INS_TEMPERATURE_CAL_ENABLE |
|
if (_imu.tcal_learning) { |
|
_imu.tcal[instance].update_accel_learning(accel, _imu.get_temperature(instance)); |
|
} |
|
#endif |
|
|
|
if (!_imu._calibrating_accel && (_imu._acal == nullptr |
|
#if HAL_INS_ACCELCAL_ENABLED |
|
|| !_imu._acal->running() |
|
#endif |
|
)) { |
|
|
|
#if HAL_INS_TEMPERATURE_CAL_ENABLE |
|
// apply temperature corrections |
|
_imu.tcal[instance].correct_accel(_imu.get_temperature(instance), _imu.caltemp_accel[instance], accel); |
|
#endif |
|
|
|
// apply offsets |
|
accel -= _imu._accel_offset[instance]; |
|
|
|
|
|
// apply scaling |
|
const Vector3f &accel_scale = _imu._accel_scale[instance].get(); |
|
accel.x *= accel_scale.x; |
|
accel.y *= accel_scale.y; |
|
accel.z *= accel_scale.z; |
|
} |
|
|
|
// rotate to body frame |
|
accel.rotate(_imu._board_orientation); |
|
} |
|
|
|
void AP_InertialSensor_Backend::_rotate_and_correct_gyro(uint8_t instance, Vector3f &gyro) |
|
{ |
|
// rotate for sensor orientation |
|
gyro.rotate(_imu._gyro_orientation[instance]); |
|
|
|
#if HAL_INS_TEMPERATURE_CAL_ENABLE |
|
if (_imu.tcal_learning) { |
|
_imu.tcal[instance].update_gyro_learning(gyro, _imu.get_temperature(instance)); |
|
} |
|
#endif |
|
|
|
if (!_imu._calibrating_gyro) { |
|
|
|
#if HAL_INS_TEMPERATURE_CAL_ENABLE |
|
// apply temperature corrections |
|
_imu.tcal[instance].correct_gyro(_imu.get_temperature(instance), _imu.caltemp_gyro[instance], gyro); |
|
#endif |
|
|
|
// gyro calibration is always assumed to have been done in sensor frame |
|
gyro -= _imu._gyro_offset[instance]; |
|
} |
|
|
|
gyro.rotate(_imu._board_orientation); |
|
} |
|
|
|
/* |
|
rotate gyro vector and add the gyro offset |
|
*/ |
|
void AP_InertialSensor_Backend::_publish_gyro(uint8_t instance, const Vector3f &gyro) /* front end */ |
|
{ |
|
if ((1U<<instance) & _imu.imu_kill_mask) { |
|
return; |
|
} |
|
_imu._gyro[instance] = gyro; |
|
_imu._gyro_healthy[instance] = true; |
|
|
|
// publish delta angle |
|
_imu._delta_angle[instance] = _imu._delta_angle_acc[instance]; |
|
_imu._delta_angle_dt[instance] = _imu._delta_angle_acc_dt[instance]; |
|
_imu._delta_angle_valid[instance] = true; |
|
|
|
_imu._delta_angle_acc[instance].zero(); |
|
_imu._delta_angle_acc_dt[instance] = 0; |
|
} |
|
|
|
/* |
|
apply harmonic notch and low pass gyro filters |
|
*/ |
|
void AP_InertialSensor_Backend::apply_gyro_filters(const uint8_t instance, const Vector3f &gyro) |
|
{ |
|
Vector3f gyro_filtered = gyro; |
|
|
|
// apply the harmonic notch filters |
|
for (auto ¬ch : _imu.harmonic_notches) { |
|
if (!notch.params.enabled()) { |
|
continue; |
|
} |
|
bool inactive = notch.is_inactive(); |
|
#ifndef HAL_BUILD_AP_PERIPH |
|
// by default we only run the expensive notch filters on the |
|
// currently active IMU we reset the inactive notch filters so |
|
// that if we switch IMUs we're not left with old data |
|
if (!notch.params.hasOption(HarmonicNotchFilterParams::Options::EnableOnAllIMUs) && |
|
instance != AP::ahrs().get_primary_gyro_index()) { |
|
inactive = true; |
|
} |
|
#endif |
|
if (inactive) { |
|
// while inactive we reset the filter so when it activates the first output |
|
// will be the first input sample |
|
notch.filter[instance].reset(); |
|
} else { |
|
gyro_filtered = notch.filter[instance].apply(gyro_filtered); |
|
} |
|
} |
|
|
|
// apply the low pass filter last to attentuate any notch induced noise |
|
gyro_filtered = _imu._gyro_filter[instance].apply(gyro_filtered); |
|
|
|
// if the filtering failed in any way then reset the filters and keep the old value |
|
if (gyro_filtered.is_nan() || gyro_filtered.is_inf()) { |
|
_imu._gyro_filter[instance].reset(); |
|
for (auto ¬ch : _imu.harmonic_notches) { |
|
notch.filter[instance].reset(); |
|
} |
|
} else { |
|
_imu._gyro_filtered[instance] = gyro_filtered; |
|
} |
|
} |
|
|
|
void AP_InertialSensor_Backend::_notify_new_gyro_raw_sample(uint8_t instance, |
|
const Vector3f &gyro, |
|
uint64_t sample_us) |
|
{ |
|
if ((1U<<instance) & _imu.imu_kill_mask) { |
|
return; |
|
} |
|
float dt; |
|
|
|
_update_sensor_rate(_imu._sample_gyro_count[instance], _imu._sample_gyro_start_us[instance], |
|
_imu._gyro_raw_sample_rates[instance]); |
|
|
|
uint64_t last_sample_us = _imu._gyro_last_sample_us[instance]; |
|
|
|
/* |
|
we have two classes of sensors. FIFO based sensors produce data |
|
at a very predictable overall rate, but the data comes in |
|
bunches, so we use the provided sample rate for deltaT. Non-FIFO |
|
sensors don't bunch up samples, but also tend to vary in actual |
|
rate, so we use the provided sample_us to get the deltaT. The |
|
difference between the two is whether sample_us is provided. |
|
*/ |
|
if (sample_us != 0 && _imu._gyro_last_sample_us[instance] != 0) { |
|
dt = (sample_us - _imu._gyro_last_sample_us[instance]) * 1.0e-6f; |
|
_imu._gyro_last_sample_us[instance] = sample_us; |
|
} else { |
|
// don't accept below 40Hz |
|
if (_imu._gyro_raw_sample_rates[instance] < 40) { |
|
return; |
|
} |
|
|
|
dt = 1.0f / _imu._gyro_raw_sample_rates[instance]; |
|
_imu._gyro_last_sample_us[instance] = AP_HAL::micros64(); |
|
sample_us = _imu._gyro_last_sample_us[instance]; |
|
} |
|
|
|
#if AP_MODULE_SUPPORTED |
|
// call gyro_sample hook if any |
|
AP_Module::call_hook_gyro_sample(instance, dt, gyro); |
|
#endif |
|
|
|
// push gyros if optical flow present |
|
if (hal.opticalflow) { |
|
hal.opticalflow->push_gyro(gyro.x, gyro.y, dt); |
|
} |
|
|
|
// compute delta angle |
|
Vector3f delta_angle = (gyro + _imu._last_raw_gyro[instance]) * 0.5f * dt; |
|
|
|
// compute coning correction |
|
// see page 26 of: |
|
// Tian et al (2010) Three-loop Integration of GPS and Strapdown INS with Coning and Sculling Compensation |
|
// Available: http://www.sage.unsw.edu.au/snap/publications/tian_etal2010b.pdf |
|
// see also examples/coning.py |
|
Vector3f delta_coning = (_imu._delta_angle_acc[instance] + |
|
_imu._last_delta_angle[instance] * (1.0f / 6.0f)); |
|
delta_coning = delta_coning % delta_angle; |
|
delta_coning *= 0.5f; |
|
|
|
{ |
|
WITH_SEMAPHORE(_sem); |
|
uint64_t now = AP_HAL::micros64(); |
|
|
|
if (now - last_sample_us > 100000U) { |
|
// zero accumulator if sensor was unhealthy for 0.1s |
|
_imu._delta_angle_acc[instance].zero(); |
|
_imu._delta_angle_acc_dt[instance] = 0; |
|
dt = 0; |
|
delta_angle.zero(); |
|
} |
|
|
|
// integrate delta angle accumulator |
|
// the angles and coning corrections are accumulated separately in the |
|
// referenced paper, but in simulation little difference was found between |
|
// integrating together and integrating separately (see examples/coning.py) |
|
_imu._delta_angle_acc[instance] += delta_angle + delta_coning; |
|
_imu._delta_angle_acc_dt[instance] += dt; |
|
|
|
// save previous delta angle for coning correction |
|
_imu._last_delta_angle[instance] = delta_angle; |
|
_imu._last_raw_gyro[instance] = gyro; |
|
#if HAL_WITH_DSP |
|
// capture gyro window for FFT analysis |
|
if (_imu._gyro_window_size > 0) { |
|
const Vector3f& scaled_gyro = gyro * _imu._gyro_raw_sampling_multiplier[instance]; |
|
_imu._gyro_window[instance][0].push(scaled_gyro.x); |
|
_imu._gyro_window[instance][1].push(scaled_gyro.y); |
|
_imu._gyro_window[instance][2].push(scaled_gyro.z); |
|
} |
|
#endif |
|
|
|
// apply gyro filters |
|
apply_gyro_filters(instance, gyro); |
|
|
|
_imu._new_gyro_data[instance] = true; |
|
} |
|
|
|
// 5us |
|
if (!_imu.batchsampler.doing_post_filter_logging()) { |
|
log_gyro_raw(instance, sample_us, gyro); |
|
} |
|
else { |
|
log_gyro_raw(instance, sample_us, _imu._gyro_filtered[instance]); |
|
} |
|
} |
|
|
|
/* |
|
handle a delta-angle sample from the backend. This assumes FIFO |
|
style sampling and the sample should not be rotated or corrected for |
|
offsets. |
|
This function should be used when the sensor driver can directly |
|
provide delta-angle values from the sensor. |
|
*/ |
|
void AP_InertialSensor_Backend::_notify_new_delta_angle(uint8_t instance, const Vector3f &dangle) |
|
{ |
|
if ((1U<<instance) & _imu.imu_kill_mask) { |
|
return; |
|
} |
|
float dt; |
|
|
|
_update_sensor_rate(_imu._sample_gyro_count[instance], _imu._sample_gyro_start_us[instance], |
|
_imu._gyro_raw_sample_rates[instance]); |
|
|
|
uint64_t last_sample_us = _imu._gyro_last_sample_us[instance]; |
|
|
|
// don't accept below 40Hz |
|
if (_imu._gyro_raw_sample_rates[instance] < 40) { |
|
return; |
|
} |
|
|
|
dt = 1.0f / _imu._gyro_raw_sample_rates[instance]; |
|
_imu._gyro_last_sample_us[instance] = AP_HAL::micros64(); |
|
uint64_t sample_us = _imu._gyro_last_sample_us[instance]; |
|
|
|
Vector3f gyro = dangle / dt; |
|
|
|
_rotate_and_correct_gyro(instance, gyro); |
|
|
|
#if AP_MODULE_SUPPORTED |
|
// call gyro_sample hook if any |
|
AP_Module::call_hook_gyro_sample(instance, dt, gyro); |
|
#endif |
|
|
|
// push gyros if optical flow present |
|
if (hal.opticalflow) { |
|
hal.opticalflow->push_gyro(gyro.x, gyro.y, dt); |
|
} |
|
|
|
// compute delta angle, including corrections |
|
Vector3f delta_angle = gyro * dt; |
|
|
|
// compute coning correction |
|
// see page 26 of: |
|
// Tian et al (2010) Three-loop Integration of GPS and Strapdown INS with Coning and Sculling Compensation |
|
// Available: http://www.sage.unsw.edu.au/snap/publications/tian_etal2010b.pdf |
|
// see also examples/coning.py |
|
Vector3f delta_coning = (_imu._delta_angle_acc[instance] + |
|
_imu._last_delta_angle[instance] * (1.0f / 6.0f)); |
|
delta_coning = delta_coning % delta_angle; |
|
delta_coning *= 0.5f; |
|
|
|
{ |
|
WITH_SEMAPHORE(_sem); |
|
uint64_t now = AP_HAL::micros64(); |
|
|
|
if (now - last_sample_us > 100000U) { |
|
// zero accumulator if sensor was unhealthy for 0.1s |
|
_imu._delta_angle_acc[instance].zero(); |
|
_imu._delta_angle_acc_dt[instance] = 0; |
|
dt = 0; |
|
delta_angle.zero(); |
|
} |
|
|
|
// integrate delta angle accumulator |
|
// the angles and coning corrections are accumulated separately in the |
|
// referenced paper, but in simulation little difference was found between |
|
// integrating together and integrating separately (see examples/coning.py) |
|
_imu._delta_angle_acc[instance] += delta_angle + delta_coning; |
|
_imu._delta_angle_acc_dt[instance] += dt; |
|
|
|
// save previous delta angle for coning correction |
|
_imu._last_delta_angle[instance] = delta_angle; |
|
_imu._last_raw_gyro[instance] = gyro; |
|
#if HAL_WITH_DSP |
|
// capture gyro window for FFT analysis |
|
if (_imu._gyro_window_size > 0) { |
|
const Vector3f& scaled_gyro = gyro * _imu._gyro_raw_sampling_multiplier[instance]; |
|
_imu._gyro_window[instance][0].push(scaled_gyro.x); |
|
_imu._gyro_window[instance][1].push(scaled_gyro.y); |
|
_imu._gyro_window[instance][2].push(scaled_gyro.z); |
|
} |
|
#endif |
|
|
|
// apply gyro filters |
|
apply_gyro_filters(instance, gyro); |
|
|
|
_imu._new_gyro_data[instance] = true; |
|
} |
|
|
|
if (!_imu.batchsampler.doing_post_filter_logging()) { |
|
log_gyro_raw(instance, sample_us, gyro); |
|
} |
|
else { |
|
log_gyro_raw(instance, sample_us, _imu._gyro_filtered[instance]); |
|
} |
|
} |
|
|
|
void AP_InertialSensor_Backend::log_gyro_raw(uint8_t instance, const uint64_t sample_us, const Vector3f &gyro) |
|
{ |
|
#if HAL_LOGGING_ENABLED |
|
AP_Logger *logger = AP_Logger::get_singleton(); |
|
if (logger == nullptr) { |
|
// should not have been called |
|
return; |
|
} |
|
if (should_log_imu_raw()) { |
|
Write_GYR(instance, sample_us, gyro); |
|
} else { |
|
if (!_imu.batchsampler.doing_sensor_rate_logging()) { |
|
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_GYRO, sample_us, gyro); |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
/* |
|
rotate accel vector, scale and add the accel offset |
|
*/ |
|
void AP_InertialSensor_Backend::_publish_accel(uint8_t instance, const Vector3f &accel) /* front end */ |
|
{ |
|
if ((1U<<instance) & _imu.imu_kill_mask) { |
|
return; |
|
} |
|
_imu._accel[instance] = accel; |
|
_imu._accel_healthy[instance] = true; |
|
|
|
// publish delta velocity |
|
_imu._delta_velocity[instance] = _imu._delta_velocity_acc[instance]; |
|
_imu._delta_velocity_dt[instance] = _imu._delta_velocity_acc_dt[instance]; |
|
_imu._delta_velocity_valid[instance] = true; |
|
|
|
_imu._delta_velocity_acc[instance].zero(); |
|
_imu._delta_velocity_acc_dt[instance] = 0; |
|
|
|
if (_imu._accel_calibrator != nullptr && _imu._accel_calibrator[instance].get_status() == ACCEL_CAL_COLLECTING_SAMPLE) { |
|
Vector3f cal_sample = _imu._delta_velocity[instance]; |
|
|
|
// remove rotation. Note that we don't need to remove offsets or scale factor as those |
|
// are not applied when calibrating |
|
cal_sample.rotate_inverse(_imu._board_orientation); |
|
|
|
_imu._accel_calibrator[instance].new_sample(cal_sample, _imu._delta_velocity_dt[instance]); |
|
} |
|
} |
|
|
|
void AP_InertialSensor_Backend::_notify_new_accel_raw_sample(uint8_t instance, |
|
const Vector3f &accel, |
|
uint64_t sample_us, |
|
bool fsync_set) |
|
{ |
|
if ((1U<<instance) & _imu.imu_kill_mask) { |
|
return; |
|
} |
|
float dt; |
|
|
|
_update_sensor_rate(_imu._sample_accel_count[instance], _imu._sample_accel_start_us[instance], |
|
_imu._accel_raw_sample_rates[instance]); |
|
|
|
uint64_t last_sample_us = _imu._accel_last_sample_us[instance]; |
|
|
|
/* |
|
we have two classes of sensors. FIFO based sensors produce data |
|
at a very predictable overall rate, but the data comes in |
|
bunches, so we use the provided sample rate for deltaT. Non-FIFO |
|
sensors don't bunch up samples, but also tend to vary in actual |
|
rate, so we use the provided sample_us to get the deltaT. The |
|
difference between the two is whether sample_us is provided. |
|
*/ |
|
if (sample_us != 0 && _imu._accel_last_sample_us[instance] != 0) { |
|
dt = (sample_us - _imu._accel_last_sample_us[instance]) * 1.0e-6f; |
|
_imu._accel_last_sample_us[instance] = sample_us; |
|
} else { |
|
// don't accept below 40Hz |
|
if (_imu._accel_raw_sample_rates[instance] < 40) { |
|
return; |
|
} |
|
|
|
dt = 1.0f / _imu._accel_raw_sample_rates[instance]; |
|
_imu._accel_last_sample_us[instance] = AP_HAL::micros64(); |
|
sample_us = _imu._accel_last_sample_us[instance]; |
|
} |
|
|
|
#if AP_MODULE_SUPPORTED |
|
// call accel_sample hook if any |
|
AP_Module::call_hook_accel_sample(instance, dt, accel, fsync_set); |
|
#endif |
|
|
|
_imu.calc_vibration_and_clipping(instance, accel, dt); |
|
|
|
{ |
|
WITH_SEMAPHORE(_sem); |
|
|
|
uint64_t now = AP_HAL::micros64(); |
|
|
|
if (now - last_sample_us > 100000U) { |
|
// zero accumulator if sensor was unhealthy for 0.1s |
|
_imu._delta_velocity_acc[instance].zero(); |
|
_imu._delta_velocity_acc_dt[instance] = 0; |
|
dt = 0; |
|
} |
|
|
|
// delta velocity |
|
_imu._delta_velocity_acc[instance] += accel * dt; |
|
_imu._delta_velocity_acc_dt[instance] += dt; |
|
|
|
_imu._accel_filtered[instance] = _imu._accel_filter[instance].apply(accel); |
|
if (_imu._accel_filtered[instance].is_nan() || _imu._accel_filtered[instance].is_inf()) { |
|
_imu._accel_filter[instance].reset(); |
|
} |
|
|
|
_imu.set_accel_peak_hold(instance, _imu._accel_filtered[instance]); |
|
|
|
_imu._new_accel_data[instance] = true; |
|
} |
|
|
|
// 5us |
|
if (!_imu.batchsampler.doing_post_filter_logging()) { |
|
log_accel_raw(instance, sample_us, accel); |
|
} else { |
|
log_accel_raw(instance, sample_us, _imu._accel_filtered[instance]); |
|
} |
|
} |
|
|
|
/* |
|
handle a delta-velocity sample from the backend. This assumes FIFO style sampling and |
|
the sample should not be rotated or corrected for offsets |
|
|
|
This function should be used when the sensor driver can directly |
|
provide delta-velocity values from the sensor. |
|
*/ |
|
void AP_InertialSensor_Backend::_notify_new_delta_velocity(uint8_t instance, const Vector3f &dvel) |
|
{ |
|
if ((1U<<instance) & _imu.imu_kill_mask) { |
|
return; |
|
} |
|
float dt; |
|
|
|
_update_sensor_rate(_imu._sample_accel_count[instance], _imu._sample_accel_start_us[instance], |
|
_imu._accel_raw_sample_rates[instance]); |
|
|
|
uint64_t last_sample_us = _imu._accel_last_sample_us[instance]; |
|
|
|
// don't accept below 40Hz |
|
if (_imu._accel_raw_sample_rates[instance] < 40) { |
|
return; |
|
} |
|
|
|
dt = 1.0f / _imu._accel_raw_sample_rates[instance]; |
|
_imu._accel_last_sample_us[instance] = AP_HAL::micros64(); |
|
uint64_t sample_us = _imu._accel_last_sample_us[instance]; |
|
|
|
Vector3f accel = dvel / dt; |
|
|
|
_rotate_and_correct_accel(instance, accel); |
|
|
|
#if AP_MODULE_SUPPORTED |
|
// call accel_sample hook if any |
|
AP_Module::call_hook_accel_sample(instance, dt, accel, false); |
|
#endif |
|
|
|
_imu.calc_vibration_and_clipping(instance, accel, dt); |
|
|
|
{ |
|
WITH_SEMAPHORE(_sem); |
|
|
|
uint64_t now = AP_HAL::micros64(); |
|
|
|
if (now - last_sample_us > 100000U) { |
|
// zero accumulator if sensor was unhealthy for 0.1s |
|
_imu._delta_velocity_acc[instance].zero(); |
|
_imu._delta_velocity_acc_dt[instance] = 0; |
|
dt = 0; |
|
} |
|
|
|
// delta velocity including corrections |
|
_imu._delta_velocity_acc[instance] += accel * dt; |
|
_imu._delta_velocity_acc_dt[instance] += dt; |
|
|
|
_imu._accel_filtered[instance] = _imu._accel_filter[instance].apply(accel); |
|
if (_imu._accel_filtered[instance].is_nan() || _imu._accel_filtered[instance].is_inf()) { |
|
_imu._accel_filter[instance].reset(); |
|
} |
|
|
|
_imu.set_accel_peak_hold(instance, _imu._accel_filtered[instance]); |
|
|
|
_imu._new_accel_data[instance] = true; |
|
} |
|
|
|
if (!_imu.batchsampler.doing_post_filter_logging()) { |
|
log_accel_raw(instance, sample_us, accel); |
|
} else { |
|
log_accel_raw(instance, sample_us, _imu._accel_filtered[instance]); |
|
} |
|
} |
|
|
|
|
|
void AP_InertialSensor_Backend::_notify_new_accel_sensor_rate_sample(uint8_t instance, const Vector3f &accel) |
|
{ |
|
if (!_imu.batchsampler.doing_sensor_rate_logging()) { |
|
return; |
|
} |
|
|
|
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_ACCEL, AP_HAL::micros64(), accel); |
|
} |
|
|
|
void AP_InertialSensor_Backend::_notify_new_gyro_sensor_rate_sample(uint8_t instance, const Vector3f &gyro) |
|
{ |
|
if (!_imu.batchsampler.doing_sensor_rate_logging()) { |
|
return; |
|
} |
|
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_GYRO, AP_HAL::micros64(), gyro); |
|
} |
|
|
|
void AP_InertialSensor_Backend::log_accel_raw(uint8_t instance, const uint64_t sample_us, const Vector3f &accel) |
|
{ |
|
#if HAL_LOGGING_ENABLED |
|
AP_Logger *logger = AP_Logger::get_singleton(); |
|
if (logger == nullptr) { |
|
// should not have been called |
|
return; |
|
} |
|
if (should_log_imu_raw()) { |
|
Write_ACC(instance, sample_us, accel); |
|
} else { |
|
if (!_imu.batchsampler.doing_sensor_rate_logging()) { |
|
_imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_ACCEL, sample_us, accel); |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
void AP_InertialSensor_Backend::_set_accel_max_abs_offset(uint8_t instance, |
|
float max_offset) |
|
{ |
|
_imu._accel_max_abs_offsets[instance] = max_offset; |
|
} |
|
|
|
// increment accelerometer error_count |
|
void AP_InertialSensor_Backend::_inc_accel_error_count(uint8_t instance) |
|
{ |
|
_imu._accel_error_count[instance]++; |
|
} |
|
|
|
// increment gyro error_count |
|
void AP_InertialSensor_Backend::_inc_gyro_error_count(uint8_t instance) |
|
{ |
|
_imu._gyro_error_count[instance]++; |
|
} |
|
|
|
/* |
|
publish a temperature value for an instance |
|
*/ |
|
void AP_InertialSensor_Backend::_publish_temperature(uint8_t instance, float temperature) /* front end */ |
|
{ |
|
if ((1U<<instance) & _imu.imu_kill_mask) { |
|
return; |
|
} |
|
_imu._temperature[instance] = temperature; |
|
|
|
#if HAL_HAVE_IMU_HEATER |
|
/* give the temperature to the control loop in order to keep it constant*/ |
|
if (instance == 0) { |
|
AP_BoardConfig *bc = AP::boardConfig(); |
|
if (bc) { |
|
bc->set_imu_temp(temperature); |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
/* |
|
common gyro update function for all backends |
|
*/ |
|
void AP_InertialSensor_Backend::update_gyro(uint8_t instance) /* front end */ |
|
{ |
|
WITH_SEMAPHORE(_sem); |
|
|
|
if ((1U<<instance) & _imu.imu_kill_mask) { |
|
return; |
|
} |
|
if (_imu._new_gyro_data[instance]) { |
|
_publish_gyro(instance, _imu._gyro_filtered[instance]); |
|
// copy the gyro samples from the backend to the frontend window |
|
#if HAL_WITH_DSP |
|
_imu._gyro_raw[instance] = _imu._last_raw_gyro[instance] * _imu._gyro_raw_sampling_multiplier[instance]; |
|
#endif |
|
_imu._new_gyro_data[instance] = false; |
|
} |
|
|
|
// possibly update filter frequency |
|
const float gyro_rate = _gyro_raw_sample_rate(instance); |
|
|
|
if (_last_gyro_filter_hz != _gyro_filter_cutoff() || sensors_converging()) { |
|
_imu._gyro_filter[instance].set_cutoff_frequency(gyro_rate, _gyro_filter_cutoff()); |
|
_last_gyro_filter_hz = _gyro_filter_cutoff(); |
|
} |
|
|
|
for (auto ¬ch : _imu.harmonic_notches) { |
|
if (notch.params.enabled()) { |
|
notch.update_params(instance, sensors_converging(), gyro_rate); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
common accel update function for all backends |
|
*/ |
|
void AP_InertialSensor_Backend::update_accel(uint8_t instance) /* front end */ |
|
{ |
|
WITH_SEMAPHORE(_sem); |
|
|
|
if ((1U<<instance) & _imu.imu_kill_mask) { |
|
return; |
|
} |
|
if (_imu._new_accel_data[instance]) { |
|
_publish_accel(instance, _imu._accel_filtered[instance]); |
|
_imu._new_accel_data[instance] = false; |
|
} |
|
|
|
// possibly update filter frequency |
|
if (_last_accel_filter_hz != _accel_filter_cutoff()) { |
|
_imu._accel_filter[instance].set_cutoff_frequency(_accel_raw_sample_rate(instance), _accel_filter_cutoff()); |
|
_last_accel_filter_hz = _accel_filter_cutoff(); |
|
} |
|
} |
|
|
|
bool AP_InertialSensor_Backend::should_log_imu_raw() const |
|
{ |
|
if (_imu._log_raw_bit == (uint32_t)-1) { |
|
// tracker does not set a bit |
|
return false; |
|
} |
|
const AP_Logger *logger = AP_Logger::get_singleton(); |
|
if (logger == nullptr) { |
|
return false; |
|
} |
|
if (!logger->should_log(_imu._log_raw_bit)) { |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
// log an unexpected change in a register for an IMU |
|
void AP_InertialSensor_Backend::log_register_change(uint32_t bus_id, const AP_HAL::Device::checkreg ®) |
|
{ |
|
#if HAL_LOGGING_ENABLED |
|
AP::logger().Write("IREG", "TimeUS,DevID,Bank,Reg,Val", "QIBBB", |
|
AP_HAL::micros64(), |
|
bus_id, |
|
reg.bank, |
|
reg.regnum, |
|
reg.value); |
|
#endif |
|
}
|
|
|