You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
426 lines
18 KiB
426 lines
18 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_Landing_Slope.cpp - Landing logic handler for ArduPlane for STANDARD_GLIDE_SLOPE |
|
*/ |
|
|
|
#include "AP_Landing.h" |
|
#include <GCS_MAVLink/GCS.h> |
|
#include <AP_HAL/AP_HAL.h> |
|
#include <AP_LandingGear/AP_LandingGear.h> |
|
#include <AP_AHRS/AP_AHRS.h> |
|
#include <AP_GPS/AP_GPS.h> |
|
#include <AP_Logger/AP_Logger.h> |
|
|
|
void AP_Landing::type_slope_do_land(const AP_Mission::Mission_Command& cmd, const float relative_altitude) |
|
{ |
|
initial_slope = 0; |
|
slope = 0; |
|
|
|
// once landed, post some landing statistics to the GCS |
|
type_slope_flags.post_stats = false; |
|
|
|
type_slope_stage = SLOPE_STAGE_NORMAL; |
|
gcs().send_text(MAV_SEVERITY_INFO, "Landing approach start at %.1fm", (double)relative_altitude); |
|
} |
|
|
|
void AP_Landing::type_slope_verify_abort_landing(const Location &prev_WP_loc, Location &next_WP_loc, bool &throttle_suppressed) |
|
{ |
|
// when aborting a landing, mimic the verify_takeoff with steering hold. Once |
|
// the altitude has been reached, restart the landing sequence |
|
throttle_suppressed = false; |
|
nav_controller->update_heading_hold(prev_WP_loc.get_bearing_to(next_WP_loc)); |
|
} |
|
|
|
/* |
|
update navigation for landing. Called when on landing approach or |
|
final flare |
|
*/ |
|
bool AP_Landing::type_slope_verify_land(const Location &prev_WP_loc, Location &next_WP_loc, const Location ¤t_loc, |
|
const float height, const float sink_rate, const float wp_proportion, const uint32_t last_flying_ms, const bool is_armed, const bool is_flying, const bool rangefinder_state_in_range) |
|
{ |
|
// we don't 'verify' landing in the sense that it never completes, |
|
// so we don't verify command completion. Instead we use this to |
|
// adjust final landing parameters |
|
|
|
// determine stage |
|
if (type_slope_stage == SLOPE_STAGE_NORMAL) { |
|
const bool heading_lined_up = abs(nav_controller->bearing_error_cd()) < 1000 && !nav_controller->data_is_stale(); |
|
const bool on_flight_line = fabsf(nav_controller->crosstrack_error()) < 5.0f && !nav_controller->data_is_stale(); |
|
const bool below_prev_WP = current_loc.alt < prev_WP_loc.alt; |
|
if ((mission.get_prev_nav_cmd_id() == MAV_CMD_NAV_LOITER_TO_ALT) || |
|
(wp_proportion >= 0 && heading_lined_up && on_flight_line) || |
|
(wp_proportion > 0.15f && heading_lined_up && below_prev_WP) || |
|
(wp_proportion > 0.5f)) { |
|
type_slope_stage = SLOPE_STAGE_APPROACH; |
|
} |
|
} |
|
|
|
/* Set land_complete (which starts the flare) under 3 conditions: |
|
1) we are within LAND_FLARE_ALT meters of the landing altitude |
|
2) we are within LAND_FLARE_SEC of the landing point vertically |
|
by the calculated sink rate (if LAND_FLARE_SEC != 0) |
|
3) we have gone past the landing point and don't have |
|
rangefinder data (to prevent us keeping throttle on |
|
after landing if we've had positive baro drift) |
|
*/ |
|
|
|
// flare check: |
|
// 1) below flare alt/sec requires approach stage check because if sec/alt are set too |
|
// large, and we're on a hard turn to line up for approach, we'll prematurely flare by |
|
// skipping approach phase and the extreme roll limits will make it hard to line up with runway |
|
// 2) passed land point and don't have an accurate AGL |
|
// 3) probably crashed (ensures motor gets turned off) |
|
|
|
const bool on_approach_stage = type_slope_is_on_approach(); |
|
const bool below_flare_alt = (height <= flare_alt); |
|
const bool below_flare_sec = (flare_sec > 0 && height <= sink_rate * flare_sec); |
|
const bool probably_crashed = (aparm.crash_detection_enable && fabsf(sink_rate) < 0.2f && !is_flying); |
|
|
|
height_flare_log = height; |
|
|
|
const AP_GPS &gps = AP::gps(); |
|
|
|
if ((on_approach_stage && below_flare_alt) || |
|
(on_approach_stage && below_flare_sec && (wp_proportion > 0.5)) || |
|
(!rangefinder_state_in_range && wp_proportion >= 1) || |
|
probably_crashed) { |
|
|
|
if (type_slope_stage != SLOPE_STAGE_FINAL) { |
|
type_slope_flags.post_stats = true; |
|
if (is_flying && (AP_HAL::millis()-last_flying_ms) > 3000) { |
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "Flare crash detected: speed=%.1f", (double)gps.ground_speed()); |
|
} else { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Flare %.1fm sink=%.2f speed=%.1f dist=%.1f", |
|
(double)height, (double)sink_rate, |
|
(double)gps.ground_speed(), |
|
(double)current_loc.get_distance(next_WP_loc)); |
|
} |
|
|
|
type_slope_stage = SLOPE_STAGE_FINAL; |
|
|
|
// Check if the landing gear was deployed before landing |
|
// If not - go around |
|
AP_LandingGear *LG_inst = AP_LandingGear::get_singleton(); |
|
if (LG_inst != nullptr && !LG_inst->check_before_land()) { |
|
type_slope_request_go_around(); |
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "Landing gear was not deployed"); |
|
} |
|
} |
|
|
|
if (gps.ground_speed() < 3) { |
|
// reload any airspeed or groundspeed parameters that may have |
|
// been set for landing. We don't do this till ground |
|
// speed drops below 3.0 m/s as otherwise we will change |
|
// target speeds too early. |
|
aparm.airspeed_cruise_cm.load(); |
|
aparm.min_gndspeed_cm.load(); |
|
aparm.throttle_cruise.load(); |
|
} |
|
} else if (type_slope_stage == SLOPE_STAGE_APPROACH && pre_flare_airspeed > 0) { |
|
bool reached_pre_flare_alt = pre_flare_alt > 0 && (height <= pre_flare_alt); |
|
bool reached_pre_flare_sec = pre_flare_sec > 0 && (height <= sink_rate * pre_flare_sec); |
|
if (reached_pre_flare_alt || reached_pre_flare_sec) { |
|
type_slope_stage = SLOPE_STAGE_PREFLARE; |
|
} |
|
} |
|
|
|
/* |
|
when landing we keep the L1 navigation waypoint 200m ahead. This |
|
prevents sudden turns if we overshoot the landing point |
|
*/ |
|
struct Location land_WP_loc = next_WP_loc; |
|
|
|
int32_t land_bearing_cd = prev_WP_loc.get_bearing_to(next_WP_loc); |
|
land_WP_loc.offset_bearing(land_bearing_cd * 0.01f, prev_WP_loc.get_distance(current_loc) + 200); |
|
nav_controller->update_waypoint(prev_WP_loc, land_WP_loc); |
|
|
|
// once landed and stationary, post some statistics |
|
// this is done before disarm_if_autoland_complete() so that it happens on the next loop after the disarm |
|
if (type_slope_flags.post_stats && !is_armed) { |
|
type_slope_flags.post_stats = false; |
|
gcs().send_text(MAV_SEVERITY_INFO, "Distance from LAND point=%.2fm", (double)current_loc.get_distance(next_WP_loc)); |
|
} |
|
|
|
// check if we should auto-disarm after a confirmed landing |
|
if (type_slope_stage == SLOPE_STAGE_FINAL) { |
|
disarm_if_autoland_complete_fn(); |
|
} |
|
|
|
if (mission.continue_after_land() && |
|
type_slope_stage == SLOPE_STAGE_FINAL && |
|
gps.status() >= AP_GPS::GPS_OK_FIX_3D && |
|
gps.ground_speed() < 1) { |
|
/* |
|
user has requested to continue with mission after a |
|
landing. Return true to allow for continue |
|
*/ |
|
return true; |
|
} |
|
|
|
/* |
|
we return false as a landing mission item never completes |
|
|
|
we stay on this waypoint unless the GCS commands us to change |
|
mission item, reset the mission, command a go-around or finish |
|
a land_abort procedure. |
|
*/ |
|
return false; |
|
} |
|
|
|
void AP_Landing::type_slope_adjust_landing_slope_for_rangefinder_bump(AP_Vehicle::FixedWing::Rangefinder_State &rangefinder_state, Location &prev_WP_loc, Location &next_WP_loc, const Location ¤t_loc, const float wp_distance, int32_t &target_altitude_offset_cm) |
|
{ |
|
// check the rangefinder correction for a large change. When found, recalculate the glide slope. This is done by |
|
// determining the slope from your current location to the land point then following that back up to the approach |
|
// altitude and moving the prev_wp to that location. From there |
|
float correction_delta = fabsf(rangefinder_state.last_stable_correction) - fabsf(rangefinder_state.correction); |
|
|
|
if (slope_recalc_shallow_threshold <= 0 || |
|
fabsf(correction_delta) < slope_recalc_shallow_threshold) { |
|
return; |
|
} |
|
|
|
rangefinder_state.last_stable_correction = rangefinder_state.correction; |
|
|
|
float corrected_alt_m = (adjusted_altitude_cm_fn() - next_WP_loc.alt)*0.01f - rangefinder_state.correction; |
|
float total_distance_m = prev_WP_loc.get_distance(next_WP_loc); |
|
float top_of_glide_slope_alt_m = total_distance_m * corrected_alt_m / wp_distance; |
|
prev_WP_loc.alt = top_of_glide_slope_alt_m*100 + next_WP_loc.alt; |
|
|
|
// re-calculate auto_state.land_slope with updated prev_WP_loc |
|
setup_landing_glide_slope(prev_WP_loc, next_WP_loc, current_loc, target_altitude_offset_cm); |
|
|
|
if (rangefinder_state.correction >= 0) { // we're too low or object is below us |
|
// correction positive means we're too low so we should continue on with |
|
// the newly computed shallower slope instead of pitching/throttling up |
|
|
|
} else if (slope_recalc_steep_threshold_to_abort > 0 && !type_slope_flags.has_aborted_due_to_slope_recalc) { |
|
// correction negative means we're too high and need to point down (and speed up) to re-align |
|
// to land on target. A large negative correction means we would have to dive down a lot and will |
|
// generating way too much speed that we can not bleed off in time. It is better to remember |
|
// the large baro altitude offset and abort the landing to come around again with the correct altitude |
|
// offset and "perfect" slope. |
|
|
|
// calculate projected slope with projected alt |
|
float new_slope_deg = degrees(atanf(slope)); |
|
float initial_slope_deg = degrees(atanf(initial_slope)); |
|
|
|
// is projected slope too steep? |
|
if (new_slope_deg - initial_slope_deg > slope_recalc_steep_threshold_to_abort) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Landing slope too steep, aborting (%.0fm %.1fdeg)", |
|
(double)rangefinder_state.correction, (double)(new_slope_deg - initial_slope_deg)); |
|
alt_offset = rangefinder_state.correction; |
|
flags.commanded_go_around = true; |
|
type_slope_flags.has_aborted_due_to_slope_recalc = true; // only allow this once. |
|
Log(); |
|
} |
|
} |
|
} |
|
|
|
bool AP_Landing::type_slope_request_go_around(void) |
|
{ |
|
flags.commanded_go_around = true; |
|
return true; |
|
} |
|
|
|
/* |
|
a special glide slope calculation for the landing approach |
|
|
|
During the land approach use a linear glide slope to a point |
|
projected through the landing point. We don't use the landing point |
|
itself as that leads to discontinuities close to the landing point, |
|
which can lead to erratic pitch control |
|
*/ |
|
void AP_Landing::type_slope_setup_landing_glide_slope(const Location &prev_WP_loc, const Location &next_WP_loc, const Location ¤t_loc, int32_t &target_altitude_offset_cm) |
|
{ |
|
float total_distance = prev_WP_loc.get_distance(next_WP_loc); |
|
|
|
// If someone mistakenly puts all 0's in their LAND command then total_distance |
|
// will be calculated as 0 and cause a divide by 0 error below. Lets avoid that. |
|
if (total_distance < 1) { |
|
total_distance = 1; |
|
} |
|
|
|
// height we need to sink for this WP |
|
float sink_height = (prev_WP_loc.alt - next_WP_loc.alt)*0.01f; |
|
|
|
// current ground speed |
|
float groundspeed = ahrs.groundspeed(); |
|
if (groundspeed < 0.5f) { |
|
groundspeed = 0.5f; |
|
} |
|
|
|
// calculate time to lose the needed altitude |
|
float sink_time = total_distance / groundspeed; |
|
if (sink_time < 0.5f) { |
|
sink_time = 0.5f; |
|
} |
|
|
|
// find the sink rate needed for the target location |
|
float sink_rate = sink_height / sink_time; |
|
|
|
// the height we aim for is the one to give us the right flare point |
|
float aim_height = flare_sec * sink_rate; |
|
if (aim_height <= 0) { |
|
aim_height = flare_alt; |
|
} |
|
|
|
// don't allow the aim height to be too far above LAND_FLARE_ALT |
|
if (flare_alt > 0 && aim_height > flare_alt*2) { |
|
aim_height = flare_alt*2; |
|
} |
|
|
|
// time before landing that we will flare |
|
float flare_time = aim_height / tecs_Controller->get_land_sinkrate(); |
|
|
|
// distance to flare is based on ground speed, adjusted as we |
|
// get closer. This takes into account the wind |
|
float flare_distance = groundspeed * flare_time; |
|
|
|
// don't allow the flare before half way along the final leg |
|
if (flare_distance > total_distance/2) { |
|
flare_distance = total_distance/2; |
|
} |
|
|
|
// project a point 500 meters past the landing point, passing |
|
// through the landing point |
|
const float land_projection = 500; |
|
int32_t land_bearing_cd = prev_WP_loc.get_bearing_to(next_WP_loc); |
|
|
|
// now calculate our aim point, which is before the landing |
|
// point and above it |
|
Location loc = next_WP_loc; |
|
loc.offset_bearing(land_bearing_cd * 0.01f, -flare_distance); |
|
loc.alt += aim_height*100; |
|
|
|
// calculate slope to landing point |
|
bool is_first_calc = is_zero(slope); |
|
slope = (sink_height - aim_height) / (total_distance - flare_distance); |
|
if (is_first_calc) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Landing glide slope %.1f degrees", (double)degrees(atanf(slope))); |
|
} |
|
|
|
// calculate point along that slope 500m ahead |
|
loc.offset_bearing(land_bearing_cd * 0.01f, land_projection); |
|
loc.alt -= slope * land_projection * 100; |
|
|
|
// setup the offset_cm for set_target_altitude_proportion() |
|
target_altitude_offset_cm = loc.alt - prev_WP_loc.alt; |
|
|
|
// calculate the proportion we are to the target |
|
float land_proportion = current_loc.line_path_proportion(prev_WP_loc, loc); |
|
|
|
// now setup the glide slope for landing |
|
set_target_altitude_proportion_fn(loc, 1.0f - land_proportion); |
|
|
|
// stay within the range of the start and end locations in altitude |
|
constrain_target_altitude_location_fn(loc, prev_WP_loc); |
|
} |
|
|
|
int32_t AP_Landing::type_slope_get_target_airspeed_cm(void) |
|
{ |
|
// we're landing, check for custom approach and |
|
// pre-flare airspeeds. Also increase for head-winds |
|
|
|
const float land_airspeed = tecs_Controller->get_land_airspeed(); |
|
int32_t target_airspeed_cm = aparm.airspeed_cruise_cm; |
|
|
|
switch (type_slope_stage) { |
|
case SLOPE_STAGE_APPROACH: |
|
if (land_airspeed >= 0) { |
|
target_airspeed_cm = land_airspeed * 100; |
|
} |
|
break; |
|
|
|
case SLOPE_STAGE_PREFLARE: |
|
case SLOPE_STAGE_FINAL: |
|
if (pre_flare_airspeed > 0) { |
|
// if we just preflared then continue using the pre-flare airspeed during final flare |
|
target_airspeed_cm = pre_flare_airspeed * 100; |
|
} else if (land_airspeed >= 0) { |
|
target_airspeed_cm = land_airspeed * 100; |
|
} |
|
break; |
|
|
|
default: |
|
break; |
|
} |
|
|
|
// when landing, add half of head-wind. |
|
const int32_t head_wind_compensation_cm = head_wind() * 0.5f * 100; |
|
|
|
// Do not lower it or exceed cruise speed |
|
return constrain_int32(target_airspeed_cm + head_wind_compensation_cm, target_airspeed_cm, aparm.airspeed_cruise_cm); |
|
} |
|
|
|
int32_t AP_Landing::type_slope_constrain_roll(const int32_t desired_roll_cd, const int32_t level_roll_limit_cd) |
|
{ |
|
if (type_slope_stage == SLOPE_STAGE_FINAL) { |
|
return constrain_int32(desired_roll_cd, level_roll_limit_cd * -1, level_roll_limit_cd); |
|
} else { |
|
return desired_roll_cd; |
|
} |
|
} |
|
|
|
bool AP_Landing::type_slope_is_flaring(void) const |
|
{ |
|
return (type_slope_stage == SLOPE_STAGE_FINAL); |
|
} |
|
|
|
bool AP_Landing::type_slope_is_on_approach(void) const |
|
{ |
|
return (type_slope_stage == SLOPE_STAGE_APPROACH || |
|
type_slope_stage == SLOPE_STAGE_PREFLARE); |
|
} |
|
|
|
bool AP_Landing::type_slope_is_expecting_impact(void) const |
|
{ |
|
return (type_slope_stage == SLOPE_STAGE_PREFLARE || |
|
type_slope_stage == SLOPE_STAGE_FINAL); |
|
} |
|
|
|
bool AP_Landing::type_slope_is_complete(void) const |
|
{ |
|
return (type_slope_stage == SLOPE_STAGE_FINAL); |
|
} |
|
|
|
void AP_Landing::type_slope_log(void) const |
|
{ |
|
// @LoggerMessage: LAND |
|
// @Description: Slope Landing data |
|
// @Field: TimeUS: Time since system startup |
|
// @Field: stage: progress through landing sequence |
|
// @Field: f1: Landing flags |
|
// @Field: f2: Slope-specific landing flags |
|
// @Field: slope: Slope to landing point |
|
// @Field: slopeInit: Initial slope to landing point |
|
// @Field: altO: Rangefinder correction |
|
// @Field: fh: Height for flare timing. |
|
AP::logger().WriteStreaming("LAND", "TimeUS,stage,f1,f2,slope,slopeInit,altO,fh", "QBBBffff", |
|
AP_HAL::micros64(), |
|
type_slope_stage, |
|
flags, |
|
type_slope_flags, |
|
(double)slope, |
|
(double)initial_slope, |
|
(double)alt_offset, |
|
(double)height_flare_log); |
|
} |
|
|
|
bool AP_Landing::type_slope_is_throttle_suppressed(void) const |
|
{ |
|
return type_slope_stage == SLOPE_STAGE_FINAL; |
|
}
|
|
|