You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
326 lines
12 KiB
326 lines
12 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#if AP_SCRIPTING_ENABLED |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
#include "AP_MotorsMatrix_6DoF_Scripting.h" |
|
#include <AP_Vehicle/AP_Vehicle.h> |
|
#include <SRV_Channel/SRV_Channel.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
void AP_MotorsMatrix_6DoF_Scripting::output_to_motors() |
|
{ |
|
switch (_spool_state) { |
|
case SpoolState::SHUT_DOWN: |
|
case SpoolState::GROUND_IDLE: |
|
{ |
|
// no output, cant spin up for ground idle because we don't know which way motors should be spining |
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
_actuator[i] = 0.0f; |
|
} |
|
} |
|
break; |
|
} |
|
case SpoolState::SPOOLING_UP: |
|
case SpoolState::THROTTLE_UNLIMITED: |
|
case SpoolState::SPOOLING_DOWN: |
|
// set motor output based on thrust requests |
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
if (_reversible[i]) { |
|
// revesible motor can provide both positive and negative thrust, +- spin max, spin min does not apply |
|
if (is_positive(_thrust_rpyt_out[i])) { |
|
_actuator[i] = apply_thrust_curve_and_volt_scaling(_thrust_rpyt_out[i]) * _spin_max; |
|
|
|
} else if (is_negative(_thrust_rpyt_out[i])) { |
|
_actuator[i] = -apply_thrust_curve_and_volt_scaling(-_thrust_rpyt_out[i]) * _spin_max; |
|
|
|
} else { |
|
_actuator[i] = 0.0f; |
|
} |
|
} else { |
|
// motor can only provide trust in a single direction, spin min to spin max as 'normal' copter |
|
_actuator[i] = thrust_to_actuator(_thrust_rpyt_out[i]); |
|
} |
|
} |
|
} |
|
break; |
|
} |
|
|
|
// Send to each motor |
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
SRV_Channels::set_output_scaled(SRV_Channels::get_motor_function(i), _actuator[i] * 4500); |
|
} |
|
} |
|
} |
|
|
|
// output_armed - sends commands to the motors |
|
void AP_MotorsMatrix_6DoF_Scripting::output_armed_stabilizing() |
|
{ |
|
uint8_t i; // general purpose counter |
|
float roll_thrust; // roll thrust input value, +/- 1.0 |
|
float pitch_thrust; // pitch thrust input value, +/- 1.0 |
|
float yaw_thrust; // yaw thrust input value, +/- 1.0 |
|
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 |
|
float forward_thrust; // forward thrust input value, +/- 1.0 |
|
float right_thrust; // right thrust input value, +/- 1.0 |
|
|
|
// note that the throttle, forwards and right inputs are not in bodyframe, they are in the frame of the 'normal' 4DoF copter were pretending to be |
|
|
|
// apply voltage and air pressure compensation |
|
const float compensation_gain = get_compensation_gain(); // compensation for battery voltage and altitude |
|
roll_thrust = (_roll_in + _roll_in_ff) * compensation_gain; |
|
pitch_thrust = (_pitch_in + _pitch_in_ff) * compensation_gain; |
|
yaw_thrust = (_yaw_in + _yaw_in_ff) * compensation_gain; |
|
throttle_thrust = get_throttle() * compensation_gain; |
|
|
|
// scale horizontal thrust with throttle, this mimics a normal copter |
|
// so we don't break the lean angle proportional acceleration assumption made by the position controller |
|
forward_thrust = get_forward() * throttle_thrust; |
|
right_thrust = get_lateral() * throttle_thrust; |
|
|
|
|
|
// set throttle limit flags |
|
if (throttle_thrust <= 0) { |
|
throttle_thrust = 0; |
|
// we cant thrust down, the vehicle can do it, but it would break a lot of assumptions further up the control stack |
|
// 1G decent probably plenty anyway.... |
|
limit.throttle_lower = true; |
|
} |
|
if (throttle_thrust >= 1) { |
|
throttle_thrust = 1; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
// rotate the thrust into bodyframe |
|
Matrix3f rot; |
|
Vector3f thrust_vec; |
|
rot.from_euler312(_roll_offset, _pitch_offset, 0.0f); |
|
|
|
|
|
/* |
|
upwards thrust, independent of orientation |
|
*/ |
|
thrust_vec.x = 0.0f; |
|
thrust_vec.y = 0.0f; |
|
thrust_vec.z = throttle_thrust; |
|
thrust_vec = rot * thrust_vec; |
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
_thrust_rpyt_out[i] = thrust_vec.x * _forward_factor[i]; |
|
_thrust_rpyt_out[i] += thrust_vec.y * _right_factor[i]; |
|
_thrust_rpyt_out[i] += thrust_vec.z * _throttle_factor[i]; |
|
|
|
if (fabsf(_thrust_rpyt_out[i]) >= 1) { |
|
// if we hit this the mixer is probably scaled incorrectly |
|
limit.throttle_upper = true; |
|
} |
|
_thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i],-1.0f,1.0f); |
|
} |
|
} |
|
|
|
|
|
/* |
|
rotations: roll, pitch and yaw |
|
*/ |
|
float rpy_ratio = 1.0f; // scale factor, output will be scaled by this ratio so it can all fit evenly |
|
float thrust[AP_MOTORS_MAX_NUM_MOTORS]; |
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
thrust[i] = roll_thrust * _roll_factor[i]; |
|
thrust[i] += pitch_thrust * _pitch_factor[i]; |
|
thrust[i] += yaw_thrust * _yaw_factor[i]; |
|
float total_thrust = _thrust_rpyt_out[i] + thrust[i]; |
|
// control input will be limited by motor range |
|
if (total_thrust > 1.0f) { |
|
rpy_ratio = MIN(rpy_ratio,(1.0f - _thrust_rpyt_out[i]) / thrust[i]); |
|
} else if (total_thrust < -1.0f) { |
|
rpy_ratio = MIN(rpy_ratio,(-1.0f -_thrust_rpyt_out[i]) / thrust[i]); |
|
} |
|
} |
|
} |
|
|
|
// set limit flags if output is being scaled |
|
if (rpy_ratio < 1) { |
|
limit.roll = true; |
|
limit.pitch = true; |
|
limit.yaw = true; |
|
} |
|
|
|
// scale back rotations evenly so it will all fit |
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
_thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i] + thrust[i] * rpy_ratio,-1.0f,1.0f); |
|
} |
|
} |
|
|
|
/* |
|
forward and lateral, independent of orentaiton |
|
*/ |
|
thrust_vec.x = forward_thrust; |
|
thrust_vec.y = right_thrust; |
|
thrust_vec.z = 0.0f; |
|
thrust_vec = rot * thrust_vec; |
|
|
|
float horz_ratio = 1.0f; |
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
thrust[i] = thrust_vec.x * _forward_factor[i]; |
|
thrust[i] += thrust_vec.y * _right_factor[i]; |
|
thrust[i] += thrust_vec.z * _throttle_factor[i]; |
|
float total_thrust = _thrust_rpyt_out[i] + thrust[i]; |
|
// control input will be limited by motor range |
|
if (total_thrust > 1.0f) { |
|
horz_ratio = MIN(horz_ratio,(1.0f - _thrust_rpyt_out[i]) / thrust[i]); |
|
} else if (total_thrust < -1.0f) { |
|
horz_ratio = MIN(horz_ratio,(-1.0f -_thrust_rpyt_out[i]) / thrust[i]); |
|
} |
|
} |
|
} |
|
|
|
// scale back evenly so it will all fit |
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
_thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i] + thrust[i] * horz_ratio,-1.0f,1.0f); |
|
} |
|
} |
|
|
|
/* |
|
apply deadzone to revesible motors, this stops motors from reversing direction too often |
|
re-use yaw headroom param for deadzone, constain to a max of 25% |
|
*/ |
|
const float deadzone = constrain_float(_yaw_headroom.get() * 0.001f,0.0f,0.25f); |
|
for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i] && _reversible[i]) { |
|
if (is_negative(_thrust_rpyt_out[i])) { |
|
if ((_thrust_rpyt_out[i] > -deadzone) && is_positive(_last_thrust_out[i])) { |
|
_thrust_rpyt_out[i] = 0.0f; |
|
} else { |
|
_last_thrust_out[i] = _thrust_rpyt_out[i]; |
|
} |
|
} else if (is_positive(_thrust_rpyt_out[i])) { |
|
if ((_thrust_rpyt_out[i] < deadzone) && is_negative(_last_thrust_out[i])) { |
|
_thrust_rpyt_out[i] = 0.0f; |
|
} else { |
|
_last_thrust_out[i] = _thrust_rpyt_out[i]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
} |
|
|
|
// sets the roll and pitch offset, this rotates the thrust vector in body frame |
|
// these are typically set such that the throttle thrust vector is earth frame up |
|
void AP_MotorsMatrix_6DoF_Scripting::set_roll_pitch(float roll_deg, float pitch_deg) |
|
{ |
|
_roll_offset = radians(roll_deg); |
|
_pitch_offset = radians(pitch_deg); |
|
} |
|
|
|
// add_motor, take roll, pitch, yaw, throttle(up), forward, right factors along with a bool if the motor is reversible and the testing order, called from scripting |
|
void AP_MotorsMatrix_6DoF_Scripting::add_motor(int8_t motor_num, float roll_factor, float pitch_factor, float yaw_factor, float throttle_factor, float forward_factor, float right_factor, bool reversible, uint8_t testing_order) |
|
{ |
|
if (initialised_ok()) { |
|
// don't allow matrix to be changed after init |
|
return; |
|
} |
|
|
|
// ensure valid motor number is provided |
|
if (motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS) { |
|
motor_enabled[motor_num] = true; |
|
|
|
_roll_factor[motor_num] = roll_factor; |
|
_pitch_factor[motor_num] = pitch_factor; |
|
_yaw_factor[motor_num] = yaw_factor; |
|
|
|
_throttle_factor[motor_num] = throttle_factor; |
|
_forward_factor[motor_num] = forward_factor; |
|
_right_factor[motor_num] = right_factor; |
|
|
|
// set order that motor appears in test |
|
_test_order[motor_num] = testing_order; |
|
|
|
// ensure valid motor number is provided |
|
SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(motor_num); |
|
SRV_Channels::set_aux_channel_default(function, motor_num); |
|
|
|
uint8_t chan; |
|
if (!SRV_Channels::find_channel(function, chan)) { |
|
gcs().send_text(MAV_SEVERITY_ERROR, "Motors: unable to setup motor %u", motor_num); |
|
return; |
|
} |
|
|
|
_reversible[motor_num] = reversible; |
|
if (_reversible[motor_num]) { |
|
// reversible, set to angle type hard code trim to 1500 |
|
SRV_Channels::set_angle(function, 4500); |
|
SRV_Channels::set_trim_to_pwm_for(function, 1500); |
|
} else { |
|
SRV_Channels::set_range(function, 4500); |
|
} |
|
SRV_Channels::set_output_min_max(function, get_pwm_output_min(), get_pwm_output_max()); |
|
} |
|
} |
|
|
|
bool AP_MotorsMatrix_6DoF_Scripting::init(uint8_t expected_num_motors) { |
|
uint8_t num_motors = 0; |
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
num_motors++; |
|
} |
|
} |
|
|
|
set_initialised_ok(expected_num_motors == num_motors); |
|
|
|
if (!initialised_ok()) { |
|
_mav_type = MAV_TYPE_GENERIC; |
|
return false; |
|
} |
|
|
|
switch (num_motors) { |
|
case 3: |
|
_mav_type = MAV_TYPE_TRICOPTER; |
|
break; |
|
case 4: |
|
_mav_type = MAV_TYPE_QUADROTOR; |
|
break; |
|
case 6: |
|
_mav_type = MAV_TYPE_HEXAROTOR; |
|
break; |
|
case 8: |
|
_mav_type = MAV_TYPE_OCTOROTOR; |
|
break; |
|
case 10: |
|
_mav_type = MAV_TYPE_DECAROTOR; |
|
break; |
|
case 12: |
|
_mav_type = MAV_TYPE_DODECAROTOR; |
|
break; |
|
default: |
|
_mav_type = MAV_TYPE_GENERIC; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// singleton instance |
|
AP_MotorsMatrix_6DoF_Scripting *AP_MotorsMatrix_6DoF_Scripting::_singleton; |
|
|
|
#endif // AP_SCRIPTING_ENABLED
|
|
|