You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
460 lines
19 KiB
460 lines
19 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#include "AP_Proximity_Boundary_3D.h" |
|
|
|
#define PROXIMITY_BOUNDARY_3D_TIMEOUT_MS 750 // we should check the 3D boundary faces after this many ms |
|
|
|
/* |
|
Constructor. |
|
This incorporates initialisation as well. |
|
*/ |
|
AP_Proximity_Boundary_3D::AP_Proximity_Boundary_3D() |
|
{ |
|
// initialise sector edge vector used for building the boundary fence |
|
init(); |
|
} |
|
|
|
// initialise the boundary and sector_edge_vector array used for object avoidance |
|
// should be called if the sector_middle_deg or _sector_width_deg arrays are changed |
|
void AP_Proximity_Boundary_3D::init() |
|
{ |
|
for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) { |
|
const float pitch = ((float)_pitch_middle_deg[layer]); |
|
for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { |
|
const float angle_rad = ((float)_sector_middle_deg[sector]+(PROXIMITY_SECTOR_WIDTH_DEG/2.0f)); |
|
_sector_edge_vector[layer][sector].offset_bearing(angle_rad, pitch, 100.0f); |
|
_boundary_points[layer][sector] = _sector_edge_vector[layer][sector] * PROXIMITY_BOUNDARY_DIST_DEFAULT; |
|
} |
|
} |
|
} |
|
|
|
// returns face corresponding to the provided yaw and (optionally) pitch |
|
// pitch is the vertical body-frame angle (in degrees) to the obstacle (0=directly ahead, 90 is above the vehicle) |
|
// yaw is the horizontal body-frame angle (in degrees) to the obstacle (0=directly ahead of the vehicle, 90 is to the right of the vehicle) |
|
AP_Proximity_Boundary_3D::Face AP_Proximity_Boundary_3D::get_face(float pitch, float yaw) const |
|
{ |
|
const uint8_t sector = wrap_360(yaw + (PROXIMITY_SECTOR_WIDTH_DEG * 0.5f)) / 45.0f; |
|
const float pitch_limited = constrain_float(pitch, -75.0f, 74.9f); |
|
const uint8_t layer = (pitch_limited + 75.0f)/PROXIMITY_PITCH_WIDTH_DEG; |
|
return Face{layer, sector}; |
|
} |
|
|
|
// Set the actual body-frame angle(yaw), pitch, and distance of the detected object. |
|
// This method will also mark the sector and layer to be "valid", |
|
// This distance can then be used for Obstacle Avoidance |
|
// Assume detected obstacle is horizontal (zero pitch), if no pitch is passed |
|
// prx_instance should be set to the proximity sensor backend instance number |
|
void AP_Proximity_Boundary_3D::set_face_attributes(const Face &face, float pitch, float angle, float distance, uint8_t prx_instance) |
|
{ |
|
if (!face.valid()) { |
|
return; |
|
} |
|
|
|
// ignore update if another instance has provided a shorter distance within the last 0.2 seconds |
|
if ((prx_instance != _prx_instance[face.layer][face.sector]) && _distance_valid[face.layer][face.sector] && (_filtered_distance[face.layer][face.sector].get() < distance)) { |
|
// check if recent |
|
const uint32_t now_ms = AP_HAL::millis(); |
|
if (now_ms - _last_update_ms[face.layer][face.sector] < PROXIMITY_FACE_RESET_MS) { |
|
return; |
|
} |
|
} |
|
|
|
_angle[face.layer][face.sector] = angle; |
|
_pitch[face.layer][face.sector] = pitch; |
|
_distance[face.layer][face.sector] = distance; |
|
_distance_valid[face.layer][face.sector] = true; |
|
_prx_instance[face.layer][face.sector] = prx_instance; |
|
|
|
// apply filter |
|
set_filtered_distance(face, distance); |
|
|
|
// update boundary used for simple avoidance |
|
update_boundary(face); |
|
} |
|
|
|
// apply a new cutoff_freq to low-pass filter |
|
void AP_Proximity_Boundary_3D::apply_filter_freq(float cutoff_freq) |
|
{ |
|
for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) { |
|
for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { |
|
_filtered_distance[layer][sector].set_cutoff_frequency(cutoff_freq); |
|
} |
|
} |
|
} |
|
|
|
// Apply low pass filter on the raw distance |
|
void AP_Proximity_Boundary_3D::set_filtered_distance(const Face &face, float distance) |
|
{ |
|
if (!face.valid()) { |
|
return; |
|
} |
|
if (!is_equal(_filtered_distance[face.layer][face.sector].get_cutoff_freq(), _filter_freq)) { |
|
// cutoff freq has changed |
|
apply_filter_freq(_filter_freq); |
|
} |
|
|
|
const uint32_t now_ms = AP_HAL::millis(); |
|
const uint32_t dt = now_ms - _last_update_ms[face.layer][face.sector]; |
|
if (dt < PROXIMITY_FILT_RESET_TIME) { |
|
_filtered_distance[face.layer][face.sector].apply(distance, dt* 0.001f); |
|
} else { |
|
// reset filter since last distance was passed a long time back |
|
_filtered_distance[face.layer][face.sector].reset(distance); |
|
} |
|
_last_update_ms[face.layer][face.sector] = now_ms; |
|
} |
|
|
|
// update boundary points used for object avoidance based on a single sector and pitch distance changing |
|
// the boundary points lie on the line between sectors meaning two boundary points may be updated based on a single sector's distance changing |
|
// the boundary point is set to the shortest distance found in the two adjacent sectors, this is a conservative boundary around the vehicle |
|
void AP_Proximity_Boundary_3D::update_boundary(const Face &face) |
|
{ |
|
// sanity check |
|
if (!face.valid()) { |
|
return; |
|
} |
|
|
|
const uint8_t layer = face.layer; |
|
const uint8_t sector = face.sector; |
|
|
|
// find adjacent sector (clockwise) |
|
const uint8_t next_sector = get_next_sector(sector); |
|
|
|
// boundary point lies on the line between the two sectors at the shorter distance found in the two sectors |
|
float shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT; |
|
if (_distance_valid[layer][sector] && _distance_valid[layer][next_sector]) { |
|
shortest_distance = MIN(_filtered_distance[layer][sector].get(), _filtered_distance[layer][next_sector].get()); |
|
} else if (_distance_valid[layer][sector]) { |
|
shortest_distance = _filtered_distance[layer][sector].get(); |
|
} else if (_distance_valid[layer][next_sector]) { |
|
shortest_distance = _filtered_distance[layer][next_sector].get(); |
|
} |
|
if (shortest_distance < PROXIMITY_BOUNDARY_DIST_MIN) { |
|
shortest_distance = PROXIMITY_BOUNDARY_DIST_MIN; |
|
} |
|
_boundary_points[layer][sector] = _sector_edge_vector[layer][sector] * shortest_distance; |
|
|
|
// if the next sector (clockwise) has an invalid distance, set boundary to create a cup like boundary |
|
if (!_distance_valid[layer][next_sector]) { |
|
_boundary_points[layer][next_sector] = _sector_edge_vector[layer][next_sector] * shortest_distance; |
|
} |
|
|
|
// repeat for edge between sector and previous sector |
|
const uint8_t prev_sector = get_prev_sector(sector); |
|
shortest_distance = PROXIMITY_BOUNDARY_DIST_DEFAULT; |
|
if (_distance_valid[layer][prev_sector] && _distance_valid[layer][sector]) { |
|
shortest_distance = MIN(_filtered_distance[layer][prev_sector].get(), _filtered_distance[layer][sector].get()); |
|
} else if (_distance_valid[layer][prev_sector]) { |
|
shortest_distance = _filtered_distance[layer][prev_sector].get(); |
|
} else if (_distance_valid[layer][sector]) { |
|
shortest_distance = _filtered_distance[layer][sector].get(); |
|
} |
|
_boundary_points[layer][prev_sector] = _sector_edge_vector[layer][prev_sector] * shortest_distance; |
|
|
|
// if the sector counter-clockwise from the previous sector has an invalid distance, set boundary to create a cup-like boundary |
|
const uint8_t prev_sector_ccw = get_prev_sector(prev_sector); |
|
if (!_distance_valid[layer][prev_sector_ccw]) { |
|
_boundary_points[layer][prev_sector_ccw] = _sector_edge_vector[layer][prev_sector_ccw] * shortest_distance; |
|
} |
|
} |
|
|
|
// reset boundary. marks all distances as invalid |
|
void AP_Proximity_Boundary_3D::reset() |
|
{ |
|
for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) { |
|
for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { |
|
_distance_valid[layer][sector] = false; |
|
} |
|
} |
|
} |
|
|
|
// Reset this location, specified by Face object, back to default |
|
// i.e Distance is marked as not-valid, and set to a large number. |
|
// prx_instance should be set to the proximity sensor's backend instance number |
|
void AP_Proximity_Boundary_3D::reset_face(const Face &face, uint8_t prx_instance) |
|
{ |
|
if (!face.valid()) { |
|
return; |
|
} |
|
|
|
// return immediately if face already has no valid distance |
|
if (!_distance_valid[face.layer][face.sector]) { |
|
return; |
|
} |
|
|
|
// ignore reset if another instance provided this face's distance within the last 0.2 seconds |
|
if (prx_instance != _prx_instance[face.layer][face.sector]) { |
|
const uint32_t now_ms = AP_HAL::millis(); |
|
if (now_ms - _last_update_ms[face.layer][face.sector] < 200) { |
|
return; |
|
} |
|
} |
|
|
|
_distance_valid[face.layer][face.sector] = false; |
|
|
|
// update simple avoidance boundary |
|
update_boundary(face); |
|
} |
|
|
|
// check if a face has valid distance even if it was updated a long time back |
|
void AP_Proximity_Boundary_3D::check_face_timeout() |
|
{ |
|
// exit immediately if already checked recently |
|
const uint32_t now_ms = AP_HAL::millis(); |
|
if ((now_ms - _last_check_face_timeout_ms) < PROXIMITY_BOUNDARY_3D_TIMEOUT_MS) { |
|
return; |
|
} |
|
_last_check_face_timeout_ms = now_ms; |
|
|
|
for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) { |
|
for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { |
|
if (_distance_valid[layer][sector]) { |
|
if ((now_ms - _last_update_ms[layer][sector]) > PROXIMITY_FACE_RESET_MS) { |
|
// this face has a valid distance but wasn't updated for a long time, reset it |
|
_distance_valid[layer][sector] = false; |
|
update_boundary(AP_Proximity_Boundary_3D::Face{layer, sector}); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// get distance for a face. returns true on success and fills in distance argument with distance in meters |
|
bool AP_Proximity_Boundary_3D::get_distance(const Face &face, float &distance) const |
|
{ |
|
if (!face.valid()) { |
|
return false; |
|
} |
|
|
|
if (_distance_valid[face.layer][face.sector]) { |
|
distance = _distance[face.layer][face.sector]; |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
// get the total number of obstacles |
|
uint8_t AP_Proximity_Boundary_3D::get_obstacle_count() const |
|
{ |
|
return PROXIMITY_NUM_LAYERS * PROXIMITY_NUM_SECTORS; |
|
} |
|
|
|
// Converts obstacle_num passed from avoidance library into appropriate face of the boundary |
|
// Returns false if the face is invalid |
|
// "update_boundary" method manipulates two sectors ccw and one sector cw from any valid face. |
|
// Any boundary that does not fall into these manipulated faces are useless, and will be marked as false |
|
// The resultant is packed into a Boundary Location object and returned by reference as "face" |
|
bool AP_Proximity_Boundary_3D::convert_obstacle_num_to_face(uint8_t obstacle_num, Face& face) const |
|
{ |
|
// obstacle num is just "flattened layers, and sectors" |
|
const uint8_t layer = obstacle_num / PROXIMITY_NUM_SECTORS; |
|
const uint8_t sector = obstacle_num % PROXIMITY_NUM_SECTORS; |
|
face.sector = sector; |
|
face.layer = layer; |
|
|
|
uint8_t valid_sector = sector; |
|
// check for 3 adjacent sectors |
|
for (uint8_t i=0; i < 3; i++) { |
|
if (_distance_valid[layer][valid_sector]) { |
|
// update boundary has manipulated this face |
|
return true; |
|
} |
|
valid_sector = get_next_sector(valid_sector); |
|
} |
|
|
|
// this face was not manipulated by "update_boundary" and is stale. Don't use it |
|
return false; |
|
} |
|
|
|
// Appropriate layer and sector are found from the passed obstacle_num |
|
// This function then draws a line between this sector, and sector + 1 at the given layer |
|
// Then returns the closest point on this line from vehicle, in body-frame. |
|
// Used by GPS based Simple Avoidance |
|
// False is returned if the obstacle_num provided does not produce a valid obstacle |
|
bool AP_Proximity_Boundary_3D::get_obstacle(uint8_t obstacle_num, Vector3f& vec_to_obstacle) const |
|
{ |
|
Face face; |
|
if (!convert_obstacle_num_to_face(obstacle_num, face)) { |
|
// not a valid face |
|
return false; |
|
} |
|
const uint8_t sector_end = face.sector; |
|
const uint8_t sector_start = get_next_sector(face.sector); |
|
|
|
const Vector3f start = _boundary_points[face.layer][sector_start]; |
|
const Vector3f end = _boundary_points[face.layer][sector_end]; |
|
vec_to_obstacle = Vector3f::point_on_line_closest_to_other_point(start, end, Vector3f{}); |
|
return true; |
|
} |
|
|
|
// Appropriate layer and sector are found from the passed obstacle_num |
|
// This function then draws a line between this sector, and sector + 1 at the given layer |
|
// Then returns the closest point on this line from the segment that was passed, in body-frame. |
|
// Addionally a 3-D plane is constructed using the closest point found above as normal, and a point on the line segment in the boundary. |
|
// True is returned when the passed line segment intersects this plane. |
|
// This helps us know if the passed line segment was in the direction of the boundary, or going in a different direction. |
|
// Used by GPS based Simple Avoidance - for "brake mode" |
|
// False is returned if the obstacle_num provided does not produce a valid obstacle |
|
bool AP_Proximity_Boundary_3D::closest_point_from_segment_to_obstacle(uint8_t obstacle_num, const Vector3f& seg_start, const Vector3f& seg_end, Vector3f& closest_point) const |
|
{ |
|
Face face; |
|
if (!convert_obstacle_num_to_face(obstacle_num, face)) { |
|
// not a valid a face |
|
return false; |
|
} |
|
|
|
const uint8_t sector_end = face.sector; |
|
const uint8_t sector_start = get_next_sector(face.sector); |
|
const Vector3f start = _boundary_points[face.layer][sector_start]; |
|
const Vector3f end = _boundary_points[face.layer][sector_end]; |
|
|
|
// closest point between passed line segment and boundary |
|
Vector3f::segment_to_segment_closest_point(seg_start, seg_end, start, end, closest_point); |
|
if (closest_point == start) { |
|
// draw a plane using the closest point as normal vector, and a point on the boundary |
|
// return false if the passed segment does not intersect the plane |
|
return Vector3f::segment_plane_intersect(seg_start, seg_end, closest_point, end); |
|
} |
|
return Vector3f::segment_plane_intersect(seg_start, seg_end, closest_point, start); |
|
} |
|
|
|
// get distance and angle to closest object (used for pre-arm check) |
|
// returns true on success, false if no valid readings |
|
bool AP_Proximity_Boundary_3D::get_closest_object(float& angle_deg, float &distance) const |
|
{ |
|
bool closest_found = false; |
|
uint8_t closest_sector = 0; |
|
uint8_t closest_layer = 0; |
|
|
|
// check boundary for shortest distance |
|
// only check for middle layers and higher |
|
// lower layers might contain ground, which will give false pre-arm failure |
|
for (uint8_t layer=PROXIMITY_MIDDLE_LAYER; layer<PROXIMITY_NUM_LAYERS; layer++) { |
|
for (uint8_t sector=0; sector<PROXIMITY_NUM_SECTORS; sector++) { |
|
if (_distance_valid[layer][sector]) { |
|
if (!closest_found || (_distance[layer][sector] < _distance[closest_layer][closest_sector])) { |
|
closest_layer = layer; |
|
closest_sector = sector; |
|
closest_found = true; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (closest_found) { |
|
angle_deg = _angle[closest_layer][closest_sector]; |
|
distance = _distance[closest_layer][closest_sector]; |
|
} |
|
return closest_found; |
|
} |
|
|
|
// get number of objects, used for non-GPS avoidance |
|
uint8_t AP_Proximity_Boundary_3D::get_horizontal_object_count() const |
|
{ |
|
return PROXIMITY_NUM_SECTORS; |
|
} |
|
|
|
// get an object's angle and distance, used for non-GPS avoidance |
|
// returns false if no angle or distance could be returned for some reason |
|
bool AP_Proximity_Boundary_3D::get_horizontal_object_angle_and_distance(uint8_t object_number, float &angle_deg, float &distance) const |
|
{ |
|
if ((object_number < PROXIMITY_NUM_SECTORS) && _distance_valid[PROXIMITY_MIDDLE_LAYER][object_number]) { |
|
angle_deg = _angle[PROXIMITY_MIDDLE_LAYER][object_number]; |
|
distance = _filtered_distance[PROXIMITY_MIDDLE_LAYER][object_number].get(); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// Return filtered distance for the passed in face |
|
bool AP_Proximity_Boundary_3D::get_filtered_distance(const Face &face, float &distance) const |
|
{ |
|
if (!face.valid()) { |
|
return false; |
|
} |
|
|
|
if (!_distance_valid[face.layer][face.sector]) { |
|
// invalid distace |
|
return false; |
|
} |
|
|
|
distance = _filtered_distance[face.layer][face.sector].get(); |
|
return true; |
|
} |
|
|
|
// Get raw and filtered distances in 8 directions per layer |
|
bool AP_Proximity_Boundary_3D::get_layer_distances(uint8_t layer_number, float dist_max, Proximity_Distance_Array &prx_dist_array, Proximity_Distance_Array &prx_filt_dist_array) const |
|
{ |
|
// cycle through all sectors filling in distances and orientations |
|
// see MAV_SENSOR_ORIENTATION for orientations (0 = forward, 1 = 45 degree clockwise from north, etc) |
|
bool valid_distances = false; |
|
prx_dist_array.offset_valid = 0; |
|
prx_filt_dist_array.offset_valid = 0; |
|
for (uint8_t i=0; i<PROXIMITY_MAX_DIRECTION; i++) { |
|
prx_dist_array.orientation[i] = i; |
|
const AP_Proximity_Boundary_3D::Face face(layer_number, i); |
|
if (!face.valid()) { |
|
return false; |
|
} |
|
if (get_distance(face, prx_dist_array.distance[i]) && get_filtered_distance(face, prx_filt_dist_array.distance[i])) { |
|
valid_distances = true; |
|
prx_dist_array.offset_valid |= (1U << i); |
|
prx_filt_dist_array.offset_valid |= (1U << i); |
|
} else { |
|
prx_dist_array.distance[i] = dist_max; |
|
prx_filt_dist_array.distance[i] = dist_max; |
|
} |
|
} |
|
|
|
return valid_distances; |
|
} |
|
|
|
// reset the temporary boundary. This fills in distances with FLT_MAX |
|
void AP_Proximity_Temp_Boundary::reset() |
|
{ |
|
for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) { |
|
for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { |
|
_distances[layer][sector] = FLT_MAX; |
|
} |
|
} |
|
} |
|
|
|
// add a distance to the temp boundary if it is shorter than any other provided distance since the last time the boundary was reset |
|
// pitch and yaw are in degrees, distance is in meters |
|
void AP_Proximity_Temp_Boundary::add_distance(const AP_Proximity_Boundary_3D::Face &face, float pitch, float yaw, float distance) |
|
{ |
|
if (face.valid() && distance < _distances[face.layer][face.sector]) { |
|
_distances[face.layer][face.sector] = distance; |
|
_angle[face.layer][face.sector] = yaw; |
|
_pitch[face.layer][face.sector] = pitch; |
|
} |
|
} |
|
|
|
// fill the original 3D boundary with the contents of this temporary boundary |
|
// prx_instance should be set to the proximity sensor's backend instance number |
|
void AP_Proximity_Temp_Boundary::update_3D_boundary(uint8_t prx_instance, AP_Proximity_Boundary_3D &boundary) |
|
{ |
|
for (uint8_t layer=0; layer < PROXIMITY_NUM_LAYERS; layer++) { |
|
for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) { |
|
if (_distances[layer][sector] < FLT_MAX) { |
|
AP_Proximity_Boundary_3D::Face face{layer, sector}; |
|
boundary.set_face_attributes(face, _pitch[layer][sector], _angle[layer][sector], _distances[layer][sector], prx_instance); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|