You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
5.1 KiB
134 lines
5.1 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
The SlewLimiter filter provides an actuator slew rate limiter for |
|
PID controllers. It is used to reduce the P and D gains when the |
|
filter detects that the P+D components are pushing the actuator |
|
beyond the configured actuator rate limit. This can prevent |
|
oscillations that are caused by the output actuation rate going |
|
beyond the actuator maximum physical rate, which causes the |
|
actuation demand and achieved rate to get out of phase. |
|
|
|
this filter was originally written by Paul Riseborough for fixed |
|
wing use. It was adapted for wider use in AC_PID by Andrew Tridgell |
|
*/ |
|
#include "SlewLimiter.h" |
|
|
|
SlewLimiter::SlewLimiter(const float &_slew_rate_max, const float &_slew_rate_tau) : |
|
slew_rate_max(_slew_rate_max), |
|
slew_rate_tau(_slew_rate_tau) |
|
{ |
|
slew_filter.set_cutoff_frequency(DERIVATIVE_CUTOFF_FREQ); |
|
slew_filter.reset(0.0); |
|
} |
|
|
|
/* |
|
apply filter to sample, returning multiplier between 0 and 1 to keep |
|
output within slew rate |
|
*/ |
|
float SlewLimiter::modifier(float sample, float dt) |
|
{ |
|
if (slew_rate_max <= 0) { |
|
_output_slew_rate = 0.0; |
|
return 1.0; |
|
} |
|
|
|
// Calculate a low pass filtered slew rate |
|
const float slew_rate = slew_filter.apply((sample - last_sample) / dt, dt); |
|
last_sample = sample; |
|
|
|
uint32_t now_ms = AP_HAL::millis(); |
|
const float decay_alpha = fminf(dt, slew_rate_tau) / slew_rate_tau; |
|
|
|
// Store a series of positive slew rate exceedance events |
|
if (!_pos_event_stored && slew_rate > slew_rate_max) { |
|
if (_pos_event_index >= N_EVENTS) { |
|
_pos_event_index = 0; |
|
} |
|
_pos_event_ms[_pos_event_index] = now_ms; |
|
_pos_event_index++; |
|
_pos_event_stored = true; |
|
_neg_event_stored = false; |
|
} |
|
|
|
// Store a series of negative slew rate exceedance events |
|
if (!_neg_event_stored && slew_rate < - slew_rate_max) { |
|
if (_neg_event_index >= N_EVENTS) { |
|
_neg_event_index = 0; |
|
} |
|
_neg_event_ms[_neg_event_index] = now_ms; |
|
_neg_event_index++; |
|
_neg_event_stored = true; |
|
_pos_event_stored = false; |
|
} |
|
|
|
// Find the oldest event time |
|
uint32_t oldest_ms = now_ms; |
|
for (uint8_t index = 0; index < N_EVENTS; index++) { |
|
if (_pos_event_ms[index] < oldest_ms) { |
|
oldest_ms = _pos_event_ms[index]; |
|
} |
|
if (_neg_event_ms[index] < oldest_ms) { |
|
oldest_ms = _neg_event_ms[index]; |
|
} |
|
} |
|
|
|
// Decay the peak positive and negative slew rate if they are outside the window |
|
// Never drop PID gains below 10% of configured value |
|
if (slew_rate > _max_pos_slew_rate) { |
|
_max_pos_slew_rate = fminf(slew_rate, 10.0f * slew_rate_max); |
|
_max_pos_slew_event_ms = now_ms; |
|
} else if (now_ms - _max_pos_slew_event_ms > WINDOW_MS) { |
|
_max_pos_slew_rate *= (1.0f - decay_alpha); |
|
} |
|
|
|
if (slew_rate < -_max_neg_slew_rate) { |
|
_max_neg_slew_rate = fminf(-slew_rate, 10.0f * slew_rate_max); |
|
_max_neg_slew_event_ms = now_ms; |
|
} else if (now_ms - _max_neg_slew_event_ms > WINDOW_MS) { |
|
_max_neg_slew_rate *= (1.0f - decay_alpha); |
|
} |
|
|
|
const float raw_slew_rate = 0.5f*(_max_pos_slew_rate + _max_neg_slew_rate); |
|
|
|
// Apply a further reduction when the oldest exceedance event falls outside the window required for the |
|
// specified number of exceedance events. This prevents spikes due to control mode changed, etc causing |
|
// unwanted gain reduction and is only applied to the slew rate used for gain reduction |
|
float modifier_input = raw_slew_rate; |
|
if (now_ms - oldest_ms > (N_EVENTS + 1) * WINDOW_MS) { |
|
const float oldest_time_from_window = 0.001f*(float)(now_ms - oldest_ms - (N_EVENTS + 1) * WINDOW_MS); |
|
modifier_input *= expf(-oldest_time_from_window / slew_rate_tau); |
|
} |
|
|
|
// Apply a filter to increases in slew rate only to reduce the effect of gusts and large controller |
|
// setpoint changes |
|
const float attack_alpha = fminf(2.0f * decay_alpha, 1.0f); |
|
|
|
_modifier_slew_rate = (1.0f - attack_alpha) * _modifier_slew_rate + attack_alpha * modifier_input; |
|
_modifier_slew_rate = fminf(_modifier_slew_rate, modifier_input); |
|
|
|
_output_slew_rate = (1.0f - attack_alpha) * _output_slew_rate + attack_alpha * raw_slew_rate; |
|
_output_slew_rate = fminf(_output_slew_rate, raw_slew_rate); |
|
|
|
// Calculate the gain adjustment |
|
float mod; |
|
if (_modifier_slew_rate > slew_rate_max) { |
|
mod = slew_rate_max / (slew_rate_max + MODIFIER_GAIN * (_modifier_slew_rate - slew_rate_max)); |
|
} else { |
|
mod = 1.0f; |
|
} |
|
|
|
return mod; |
|
}
|
|
|