You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
8.4 KiB
227 lines
8.4 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
simple electric motor simulator class |
|
*/ |
|
|
|
#include "SIM_Motor.h" |
|
#include <AP_Motors/AP_Motors.h> |
|
|
|
using namespace SITL; |
|
|
|
// calculate rotational accel and thrust for a motor |
|
void Motor::calculate_forces(const struct sitl_input &input, |
|
uint8_t motor_offset, |
|
Vector3f &torque, |
|
Vector3f &thrust, |
|
const Vector3f &velocity_air_bf, |
|
const Vector3f &gyro, |
|
float air_density, |
|
float voltage, |
|
bool use_drag) |
|
{ |
|
|
|
const float pwm = input.servos[motor_offset+servo]; |
|
float command = pwm_to_command(pwm); |
|
float voltage_scale = voltage / voltage_max; |
|
|
|
if (voltage_scale < 0.1) { |
|
// battery is dead |
|
torque.zero(); |
|
thrust.zero(); |
|
current = 0; |
|
return; |
|
} |
|
|
|
// apply slew limiter to command |
|
uint64_t now_us = AP_HAL::micros64(); |
|
if (last_calc_us != 0 && slew_max > 0) { |
|
float dt = (now_us - last_calc_us)*1.0e-6; |
|
float slew_max_change = slew_max * dt; |
|
command = constrain_float(command, last_command-slew_max_change, last_command+slew_max_change); |
|
} |
|
last_calc_us = now_us; |
|
last_command = command; |
|
|
|
// velocity of motor through air |
|
Vector3f motor_vel = velocity_air_bf; |
|
|
|
// add velocity of motor about center due to vehicle rotation |
|
motor_vel += -(position % gyro); |
|
|
|
// calculate velocity into prop, clipping at zero |
|
float velocity_in = MAX(0, -motor_vel.projected(thrust_vector).z); |
|
|
|
// get thrust for untilted motor |
|
float motor_thrust = calc_thrust(command, air_density, velocity_in, voltage_scale); |
|
|
|
// the yaw torque of the motor |
|
const float yaw_scale = 0.05 * diagonal_size * motor_thrust; |
|
Vector3f rotor_torque = thrust_vector * yaw_factor * command * yaw_scale * -1.0; |
|
|
|
// thrust in bodyframe NED |
|
thrust = thrust_vector * motor_thrust; |
|
|
|
// work out roll and pitch of motor relative to it pointing straight up |
|
float roll = 0, pitch = 0; |
|
|
|
uint64_t now = AP_HAL::micros64(); |
|
|
|
// possibly roll and/or pitch the motor |
|
if (roll_servo >= 0) { |
|
uint16_t servoval = update_servo(input.servos[roll_servo+motor_offset], now, last_roll_value); |
|
if (roll_min < roll_max) { |
|
roll = constrain_float(roll_min + (servoval-1000)*0.001*(roll_max-roll_min), roll_min, roll_max); |
|
} else { |
|
roll = constrain_float(roll_max + (2000-servoval)*0.001*(roll_min-roll_max), roll_max, roll_min); |
|
} |
|
} |
|
if (pitch_servo >= 0) { |
|
uint16_t servoval = update_servo(input.servos[pitch_servo+motor_offset], now, last_pitch_value); |
|
if (pitch_min < pitch_max) { |
|
pitch = constrain_float(pitch_min + (servoval-1000)*0.001*(pitch_max-pitch_min), pitch_min, pitch_max); |
|
} else { |
|
pitch = constrain_float(pitch_max + (2000-servoval)*0.001*(pitch_min-pitch_max), pitch_max, pitch_min); |
|
} |
|
} |
|
last_change_usec = now; |
|
|
|
// calculate torque in newton-meters |
|
torque = (position % thrust) + rotor_torque; |
|
|
|
// possibly rotate the thrust vector and the rotor torque |
|
if (!is_zero(roll) || !is_zero(pitch)) { |
|
Matrix3f rotation; |
|
rotation.from_euler(radians(roll), radians(pitch), 0); |
|
thrust = rotation * thrust; |
|
torque = rotation * torque; |
|
} |
|
|
|
if (use_drag) { |
|
// calculate momentum drag per motor |
|
const float momentum_drag_factor = momentum_drag_coefficient * sqrtf(air_density * true_prop_area); |
|
Vector3f momentum_drag; |
|
momentum_drag.x = momentum_drag_factor * motor_vel.x * (sqrtf(fabsf(thrust.y)) + sqrtf(fabsf(thrust.z))); |
|
momentum_drag.y = momentum_drag_factor * motor_vel.y * (sqrtf(fabsf(thrust.x)) + sqrtf(fabsf(thrust.z))); |
|
// The application of momentum drag to the Z axis is a 'hack' to compensate for incorrect modelling |
|
// of the variation of thust with inflow velocity. If not applied, the vehicle will |
|
// climb at an unrealistic rate during operation in STABILIZE. TODO replace prop and motor model in |
|
// with one based on DC motor, momentum disc and blade element theory. |
|
momentum_drag.z = momentum_drag_factor * motor_vel.z * (sqrtf(fabsf(thrust.x)) + sqrtf(fabsf(thrust.y)) + sqrtf(fabsf(thrust.z))); |
|
|
|
thrust -= momentum_drag; |
|
} |
|
|
|
// calculate current |
|
float power = power_factor * fabsf(motor_thrust); |
|
current = power / MAX(voltage, 0.1); |
|
} |
|
|
|
/* |
|
update and return current value of a servo. Calculated as 1000..2000 |
|
*/ |
|
uint16_t Motor::update_servo(uint16_t demand, uint64_t time_usec, float &last_value) const |
|
{ |
|
if (servo_rate <= 0) { |
|
return demand; |
|
} |
|
if (servo_type == SERVO_RETRACT) { |
|
// handle retract servos |
|
if (demand > 1700) { |
|
demand = 2000; |
|
} else if (demand < 1300) { |
|
demand = 1000; |
|
} else { |
|
demand = last_value; |
|
} |
|
} |
|
demand = constrain_int16(demand, 1000, 2000); |
|
float dt = (time_usec - last_change_usec) * 1.0e-6f; |
|
// assume servo moves through 90 degrees over 1000 to 2000 |
|
float max_change = 1000 * (dt / servo_rate) * 60.0f / 90.0f; |
|
last_value = constrain_float(demand, last_value-max_change, last_value+max_change); |
|
return uint16_t(last_value+0.5); |
|
} |
|
|
|
|
|
// calculate current and voltage |
|
float Motor::get_current(void) const |
|
{ |
|
return current; |
|
} |
|
|
|
// setup PWM ranges for this motor |
|
void Motor::setup_params(uint16_t _pwm_min, uint16_t _pwm_max, float _spin_min, float _spin_max, float _expo, float _slew_max, |
|
float _diagonal_size, float _power_factor, float _voltage_max, float _effective_prop_area, |
|
float _velocity_max, Vector3f _position, Vector3f _thrust_vector, float _yaw_factor, |
|
float _true_prop_area, float _momentum_drag_coefficient) |
|
{ |
|
mot_pwm_min = _pwm_min; |
|
mot_pwm_max = _pwm_max; |
|
mot_spin_min = _spin_min; |
|
mot_spin_max = _spin_max; |
|
mot_expo = _expo; |
|
slew_max = _slew_max; |
|
power_factor = _power_factor; |
|
voltage_max = _voltage_max; |
|
effective_prop_area = _effective_prop_area; |
|
max_outflow_velocity = _velocity_max; |
|
true_prop_area = _true_prop_area; |
|
momentum_drag_coefficient = _momentum_drag_coefficient; |
|
diagonal_size = _diagonal_size; |
|
|
|
if (!_position.is_zero()) { |
|
position = _position; |
|
} else { |
|
position.x = cosf(radians(angle)) * _diagonal_size; |
|
position.y = sinf(radians(angle)) * _diagonal_size; |
|
position.z = 0; |
|
} |
|
|
|
if (!_thrust_vector.is_zero()) { |
|
thrust_vector = _thrust_vector; |
|
} |
|
if (!is_zero(_yaw_factor)) { |
|
yaw_factor = _yaw_factor; |
|
} |
|
} |
|
|
|
/* |
|
convert a PWM value to a command value from 0 to 1 |
|
*/ |
|
float Motor::pwm_to_command(float pwm) const |
|
{ |
|
const float pwm_thrust_max = mot_pwm_min + mot_spin_max * (mot_pwm_max - mot_pwm_min); |
|
const float pwm_thrust_min = mot_pwm_min + mot_spin_min * (mot_pwm_max - mot_pwm_min); |
|
const float pwm_thrust_range = pwm_thrust_max - pwm_thrust_min; |
|
return constrain_float((pwm-pwm_thrust_min)/pwm_thrust_range, 0, 1); |
|
} |
|
|
|
/* |
|
calculate thrust given a command value |
|
*/ |
|
float Motor::calc_thrust(float command, float air_density, float velocity_in, float voltage_scale) const |
|
{ |
|
float velocity_out = voltage_scale * max_outflow_velocity * sqrtf((1-mot_expo)*command + mot_expo*sq(command)); |
|
float ret = 0.5 * air_density * effective_prop_area * (sq(velocity_out) - sq(velocity_in)); |
|
#if 0 |
|
if (command > 0) { |
|
::printf("air_density=%f effective_prop_area=%f velocity_in=%f velocity_max=%f\n", |
|
air_density, effective_prop_area, velocity_in, voltage_scale * max_outflow_velocity); |
|
::printf("calc_thrust %.3f %.3f\n", command, ret); |
|
} |
|
#endif |
|
return ret; |
|
}
|
|
|