You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
4.8 KiB
173 lines
4.8 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
rover simulator class |
|
*/ |
|
|
|
#include "SIM_Rover.h" |
|
|
|
#include <string.h> |
|
#include <stdio.h> |
|
|
|
namespace SITL { |
|
|
|
SimRover::SimRover(const char *frame_str) : |
|
Aircraft(frame_str) |
|
{ |
|
skid_steering = strstr(frame_str, "skid") != nullptr; |
|
|
|
if (skid_steering) { |
|
printf("SKID Steering Rover Simulation Started\n"); |
|
// these are taken from a 6V wild thumper with skid steering, |
|
// with a sabertooth controller |
|
max_accel = 14; |
|
max_speed = 4; |
|
return; |
|
} |
|
|
|
vectored_thrust = strstr(frame_str, "vector") != nullptr; |
|
if (vectored_thrust) { |
|
printf("Vectored Thrust Rover Simulation Started\n"); |
|
} |
|
lock_step_scheduled = true; |
|
} |
|
|
|
|
|
|
|
/* |
|
return turning circle (diameter) in meters for steering angle proportion in degrees |
|
*/ |
|
float SimRover::turn_circle(float steering) const |
|
{ |
|
if (fabsf(steering) < 1.0e-6) { |
|
return 0; |
|
} |
|
return turning_circle * sinf(radians(max_wheel_turn)) / sinf(radians(steering*max_wheel_turn)); |
|
} |
|
|
|
/* |
|
return yaw rate in degrees/second given steering_angle and speed |
|
*/ |
|
float SimRover::calc_yaw_rate(float steering, float speed) |
|
{ |
|
if (skid_steering) { |
|
return steering * skid_turn_rate; |
|
} |
|
if (vectored_thrust) { |
|
return steering * vectored_turn_rate_max; |
|
} |
|
if (fabsf(steering) < 1.0e-6 or fabsf(speed) < 1.0e-6) { |
|
return 0; |
|
} |
|
float d = turn_circle(steering); |
|
float c = M_PI * d; |
|
float t = c / speed; |
|
float rate = 360.0f / t; |
|
return rate; |
|
} |
|
|
|
/* |
|
return lateral acceleration in m/s/s |
|
*/ |
|
float SimRover::calc_lat_accel(float steering_angle, float speed) |
|
{ |
|
float yaw_rate = calc_yaw_rate(steering_angle, speed); |
|
float accel = radians(yaw_rate) * speed; |
|
return accel; |
|
} |
|
|
|
/* |
|
update the rover simulation by one time step |
|
*/ |
|
void SimRover::update(const struct sitl_input &input) |
|
{ |
|
float steering, throttle; |
|
|
|
// if in skid steering mode the steering and throttle values are used for motor1 and motor2 |
|
if (skid_steering) { |
|
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f); |
|
float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f); |
|
steering = motor1 - motor2; |
|
throttle = 0.5*(motor1 + motor2); |
|
} else { |
|
steering = 2*((input.servos[0]-1000)/1000.0f - 0.5f); |
|
throttle = 2*((input.servos[2]-1000)/1000.0f - 0.5f); |
|
|
|
// vectored thrust conversion |
|
if (vectored_thrust) { |
|
const float steering_angle_rad = radians(steering * vectored_angle_max); |
|
steering = sinf(steering_angle_rad) * throttle; |
|
throttle *= cosf(steering_angle_rad); |
|
} |
|
} |
|
|
|
// how much time has passed? |
|
float delta_time = frame_time_us * 1.0e-6f; |
|
|
|
// speed in m/s in body frame |
|
Vector3f velocity_body = dcm.transposed() * velocity_ef; |
|
|
|
// speed along x axis, +ve is forward |
|
float speed = velocity_body.x; |
|
|
|
// yaw rate in degrees/s |
|
float yaw_rate = calc_yaw_rate(steering, speed); |
|
|
|
// target speed with current throttle |
|
float target_speed = throttle * max_speed; |
|
|
|
// linear acceleration in m/s/s - very crude model |
|
float accel = max_accel * (target_speed - speed) / max_speed; |
|
|
|
gyro = Vector3f(0,0,radians(yaw_rate)); |
|
|
|
// update attitude |
|
dcm.rotate(gyro * delta_time); |
|
dcm.normalize(); |
|
|
|
// accel in body frame due to motor |
|
accel_body = Vector3f(accel, 0, 0); |
|
|
|
// add in accel due to direction change |
|
accel_body.y += radians(yaw_rate) * speed; |
|
|
|
// now in earth frame |
|
Vector3f accel_earth = dcm * accel_body; |
|
accel_earth += Vector3f(0, 0, GRAVITY_MSS); |
|
|
|
// we are on the ground, so our vertical accel is zero |
|
accel_earth.z = 0; |
|
|
|
// work out acceleration as seen by the accelerometers. It sees the kinematic |
|
// acceleration (ie. real movement), plus gravity |
|
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS)); |
|
|
|
// new velocity vector |
|
velocity_ef += accel_earth * delta_time; |
|
|
|
// new position vector |
|
position += (velocity_ef * delta_time).todouble(); |
|
|
|
update_external_payload(input); |
|
|
|
// update lat/lon/altitude |
|
update_position(); |
|
time_advance(); |
|
|
|
// update magnetic field |
|
update_mag_field_bf(); |
|
} |
|
|
|
} // namespace SITL
|
|
|