You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
269 lines
11 KiB
269 lines
11 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#include <AP_Common/AP_Common.h> |
|
#include <AP_HAL/AP_HAL.h> |
|
#include "AP_BattMonitor.h" |
|
#include "AP_BattMonitor_Backend.h" |
|
|
|
/* |
|
base class constructor. |
|
This incorporates initialisation as well. |
|
*/ |
|
AP_BattMonitor_Backend::AP_BattMonitor_Backend(AP_BattMonitor &mon, AP_BattMonitor::BattMonitor_State &mon_state, |
|
AP_BattMonitor_Params ¶ms) : |
|
_mon(mon), |
|
_state(mon_state), |
|
_params(params) |
|
{ |
|
} |
|
|
|
// capacity_remaining_pct - returns true if the battery % is available and writes to the percentage argument |
|
// return false if the battery is unhealthy, does not have current monitoring, or the pack_capacity is too small |
|
bool AP_BattMonitor_Backend::capacity_remaining_pct(uint8_t &percentage) const |
|
{ |
|
// we consider anything under 10 mAh as being an invalid capacity and so will be our measurement of remaining capacity |
|
if ( _params._pack_capacity <= 10) { |
|
return false; |
|
} |
|
|
|
// the monitor must have current readings in order to estimate consumed_mah and be healthy |
|
if (!has_current() || !_state.healthy) { |
|
return false; |
|
} |
|
|
|
const float mah_remaining = _params._pack_capacity - _state.consumed_mah; |
|
percentage = constrain_float(100 * mah_remaining / _params._pack_capacity, 0, UINT8_MAX); |
|
return true; |
|
} |
|
|
|
// update battery resistance estimate |
|
// faster rates of change of the current and voltage readings cause faster updates to the resistance estimate |
|
// the battery resistance is calculated by comparing the latest current and voltage readings to a low-pass filtered current and voltage |
|
// high current steps are integrated into the resistance estimate by varying the time constant of the resistance filter |
|
void AP_BattMonitor_Backend::update_resistance_estimate() |
|
{ |
|
// return immediately if no current |
|
if (!has_current() || !is_positive(_state.current_amps)) { |
|
return; |
|
} |
|
|
|
// update maximum current seen since startup and protect against divide by zero |
|
_current_max_amps = MAX(_current_max_amps, _state.current_amps); |
|
float current_delta = _state.current_amps - _current_filt_amps; |
|
if (is_zero(current_delta)) { |
|
return; |
|
} |
|
|
|
// update reference voltage and current |
|
if (_state.voltage > _resistance_voltage_ref) { |
|
_resistance_voltage_ref = _state.voltage; |
|
_resistance_current_ref = _state.current_amps; |
|
} |
|
|
|
// calculate time since last update |
|
uint32_t now = AP_HAL::millis(); |
|
float loop_interval = (now - _resistance_timer_ms) * 0.001f; |
|
_resistance_timer_ms = now; |
|
|
|
// estimate short-term resistance |
|
float filt_alpha = constrain_float(loop_interval/(loop_interval + AP_BATT_MONITOR_RES_EST_TC_1), 0.0f, 0.5f); |
|
float resistance_alpha = MIN(1, AP_BATT_MONITOR_RES_EST_TC_2*fabsf((_state.current_amps-_current_filt_amps)/_current_max_amps)); |
|
float resistance_estimate = -(_state.voltage-_voltage_filt)/current_delta; |
|
if (is_positive(resistance_estimate)) { |
|
_state.resistance = _state.resistance*(1-resistance_alpha) + resistance_estimate*resistance_alpha; |
|
} |
|
|
|
// calculate maximum resistance |
|
if ((_resistance_voltage_ref > _state.voltage) && (_state.current_amps > _resistance_current_ref)) { |
|
float resistance_max = (_resistance_voltage_ref - _state.voltage) / (_state.current_amps - _resistance_current_ref); |
|
_state.resistance = MIN(_state.resistance, resistance_max); |
|
} |
|
|
|
// update the filtered voltage and currents |
|
_voltage_filt = _voltage_filt*(1-filt_alpha) + _state.voltage*filt_alpha; |
|
_current_filt_amps = _current_filt_amps*(1-filt_alpha) + _state.current_amps*filt_alpha; |
|
|
|
// update estimated voltage without sag |
|
_state.voltage_resting_estimate = _state.voltage + _state.current_amps * _state.resistance; |
|
} |
|
|
|
float AP_BattMonitor_Backend::voltage_resting_estimate() const |
|
{ |
|
// resting voltage should always be greater than or equal to the raw voltage |
|
return MAX(_state.voltage, _state.voltage_resting_estimate); |
|
} |
|
|
|
AP_BattMonitor::Failsafe AP_BattMonitor_Backend::update_failsafes(void) |
|
{ |
|
const uint32_t now = AP_HAL::millis(); |
|
|
|
bool low_voltage, low_capacity, critical_voltage, critical_capacity; |
|
check_failsafe_types(low_voltage, low_capacity, critical_voltage, critical_capacity); |
|
|
|
if (critical_voltage) { |
|
// this is the first time our voltage has dropped below minimum so start timer |
|
if (_state.critical_voltage_start_ms == 0) { |
|
_state.critical_voltage_start_ms = now; |
|
} else if (_params._low_voltage_timeout > 0 && |
|
now - _state.critical_voltage_start_ms > uint32_t(_params._low_voltage_timeout)*1000U) { |
|
return AP_BattMonitor::Failsafe::Critical; |
|
} |
|
} else { |
|
// acceptable voltage so reset timer |
|
_state.critical_voltage_start_ms = 0; |
|
} |
|
|
|
if (critical_capacity) { |
|
return AP_BattMonitor::Failsafe::Critical; |
|
} |
|
|
|
if (low_voltage) { |
|
// this is the first time our voltage has dropped below minimum so start timer |
|
if (_state.low_voltage_start_ms == 0) { |
|
_state.low_voltage_start_ms = now; |
|
} else if (_params._low_voltage_timeout > 0 && |
|
now - _state.low_voltage_start_ms > uint32_t(_params._low_voltage_timeout)*1000U) { |
|
return AP_BattMonitor::Failsafe::Low; |
|
} |
|
} else { |
|
// acceptable voltage so reset timer |
|
_state.low_voltage_start_ms = 0; |
|
} |
|
|
|
if (low_capacity) { |
|
return AP_BattMonitor::Failsafe::Low; |
|
} |
|
|
|
// if we've gotten this far then battery is ok |
|
return AP_BattMonitor::Failsafe::None; |
|
} |
|
|
|
static bool update_check(size_t buflen, char *buffer, bool failed, const char *message) |
|
{ |
|
if (failed) { |
|
strncpy(buffer, message, buflen); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
bool AP_BattMonitor_Backend::arming_checks(char * buffer, size_t buflen) const |
|
{ |
|
bool low_voltage, low_capacity, critical_voltage, critical_capacity; |
|
check_failsafe_types(low_voltage, low_capacity, critical_voltage, critical_capacity); |
|
|
|
bool below_arming_voltage = is_positive(_params._arming_minimum_voltage) && |
|
(_state.voltage < _params._arming_minimum_voltage); |
|
bool below_arming_capacity = (_params._arming_minimum_capacity > 0) && |
|
((_params._pack_capacity - _state.consumed_mah) < _params._arming_minimum_capacity); |
|
bool fs_capacity_inversion = is_positive(_params._critical_capacity) && |
|
is_positive(_params._low_capacity) && |
|
(_params._low_capacity < _params._critical_capacity); |
|
bool fs_voltage_inversion = is_positive(_params._critical_voltage) && |
|
is_positive(_params._low_voltage) && |
|
(_params._low_voltage < _params._critical_voltage); |
|
|
|
bool result = update_check(buflen, buffer, !_state.healthy, "unhealthy"); |
|
result = result && update_check(buflen, buffer, below_arming_voltage, "below minimum arming voltage"); |
|
result = result && update_check(buflen, buffer, below_arming_capacity, "below minimum arming capacity"); |
|
result = result && update_check(buflen, buffer, low_voltage, "low voltage failsafe"); |
|
result = result && update_check(buflen, buffer, low_capacity, "low capacity failsafe"); |
|
result = result && update_check(buflen, buffer, critical_voltage, "critical voltage failsafe"); |
|
result = result && update_check(buflen, buffer, critical_capacity, "critical capacity failsafe"); |
|
result = result && update_check(buflen, buffer, fs_capacity_inversion, "capacity failsafe critical > low"); |
|
result = result && update_check(buflen, buffer, fs_voltage_inversion, "voltage failsafe critical > low"); |
|
|
|
return result; |
|
} |
|
|
|
void AP_BattMonitor_Backend::check_failsafe_types(bool &low_voltage, bool &low_capacity, bool &critical_voltage, bool &critical_capacity) const |
|
{ |
|
// use voltage or sag compensated voltage |
|
float voltage_used; |
|
switch (_params.failsafe_voltage_source()) { |
|
case AP_BattMonitor_Params::BattMonitor_LowVoltageSource_Raw: |
|
default: |
|
voltage_used = _state.voltage; |
|
break; |
|
case AP_BattMonitor_Params::BattMonitor_LowVoltageSource_SagCompensated: |
|
voltage_used = voltage_resting_estimate(); |
|
break; |
|
} |
|
|
|
// check critical battery levels |
|
if ((voltage_used > 0) && (_params._critical_voltage > 0) && (voltage_used < _params._critical_voltage)) { |
|
critical_voltage = true; |
|
} else { |
|
critical_voltage = false; |
|
} |
|
|
|
// check capacity failsafe if current monitoring is enabled |
|
if (has_current() && (_params._critical_capacity > 0) && |
|
((_params._pack_capacity - _state.consumed_mah) < _params._critical_capacity)) { |
|
critical_capacity = true; |
|
} else { |
|
critical_capacity = false; |
|
} |
|
|
|
if ((voltage_used > 0) && (_params._low_voltage > 0) && (voltage_used < _params._low_voltage)) { |
|
low_voltage = true; |
|
} else { |
|
low_voltage = false; |
|
} |
|
|
|
// check capacity if current monitoring is enabled |
|
if (has_current() && (_params._low_capacity > 0) && |
|
((_params._pack_capacity - _state.consumed_mah) < _params._low_capacity)) { |
|
low_capacity = true; |
|
} else { |
|
low_capacity = false; |
|
} |
|
} |
|
|
|
/* |
|
default implementation for reset_remaining(). This sets consumed_wh |
|
and consumed_mah based on the given percentage. Use percentage=100 |
|
for a full battery |
|
*/ |
|
bool AP_BattMonitor_Backend::reset_remaining(float percentage) |
|
{ |
|
percentage = constrain_float(percentage, 0, 100); |
|
const float used_proportion = (100.0f - percentage) * 0.01f; |
|
_state.consumed_mah = used_proportion * _params._pack_capacity; |
|
// without knowing the history we can't do consumed_wh |
|
// accurately. Best estimate is based on current voltage. This |
|
// will be good when resetting the battery to a value close to |
|
// full charge |
|
_state.consumed_wh = _state.consumed_mah * 0.001f * _state.voltage; |
|
|
|
// reset failsafe state for this backend |
|
_state.failsafe = update_failsafes(); |
|
|
|
return true; |
|
} |
|
|
|
/* |
|
update consumed mAh and Wh |
|
*/ |
|
void AP_BattMonitor_Backend::update_consumed(AP_BattMonitor::BattMonitor_State &state, uint32_t dt_us) |
|
{ |
|
// update total current drawn since startup |
|
if (state.last_time_micros != 0 && dt_us < 2000000) { |
|
const float mah = calculate_mah(state.current_amps, dt_us); |
|
state.consumed_mah += mah; |
|
state.consumed_wh += 0.001 * mah * state.voltage; |
|
} |
|
}
|
|
|