You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
3.6 KiB
143 lines
3.6 KiB
/// @file PID.cpp |
|
/// @brief Generic PID algorithm |
|
|
|
#include <cmath> |
|
|
|
#include "PID.h" |
|
#include <AP_HAL/AP_HAL.h> |
|
#include <AP_Math/AP_Math.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo PID::var_info[] = { |
|
|
|
// @Param: P |
|
// @DisplayName: PID Proportional Gain |
|
// @Description: P Gain which produces an output value that is proportional to the current error value |
|
AP_GROUPINFO("P", 0, PID, _kp, 0), |
|
|
|
// @Param: I |
|
// @DisplayName: PID Integral Gain |
|
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error |
|
AP_GROUPINFO("I", 1, PID, _ki, 0), |
|
|
|
// @Param: D |
|
// @DisplayName: PID Derivative Gain |
|
// @Description: D Gain which produces an output that is proportional to the rate of change of the error |
|
AP_GROUPINFO("D", 2, PID, _kd, 0), |
|
|
|
// @Param: IMAX |
|
// @DisplayName: PID Integral Maximum |
|
// @Description: The maximum/minimum value that the I term can output |
|
AP_GROUPINFO("IMAX", 3, PID, _imax, 0), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
float PID::get_pid(float error, float scaler) |
|
{ |
|
uint32_t tnow = AP_HAL::millis(); |
|
uint32_t dt = tnow - _last_t; |
|
float output = 0; |
|
float delta_time; |
|
|
|
if (_last_t == 0 || dt > 1000) { |
|
dt = 0; |
|
|
|
// if this PID hasn't been used for a full second then zero |
|
// the intergator term. This prevents I buildup from a |
|
// previous fight mode from causing a massive return before |
|
// the integrator gets a chance to correct itself |
|
reset_I(); |
|
} |
|
_last_t = tnow; |
|
|
|
delta_time = (float)dt / 1000.0f; |
|
|
|
// Compute proportional component |
|
_pid_info.P = error * _kp; |
|
output += _pid_info.P; |
|
|
|
// Compute derivative component if time has elapsed |
|
if ((fabsf(_kd) > 0) && (dt > 0)) { |
|
float derivative; |
|
|
|
if (isnan(_last_derivative)) { |
|
// we've just done a reset, suppress the first derivative |
|
// term as we don't want a sudden change in input to cause |
|
// a large D output change |
|
derivative = 0; |
|
_last_derivative = 0; |
|
} else { |
|
derivative = (error - _last_error) / delta_time; |
|
} |
|
|
|
// discrete low pass filter, cuts out the |
|
// high frequency noise that can drive the controller crazy |
|
float RC = 1/(2*M_PI*_fCut); |
|
derivative = _last_derivative + |
|
((delta_time / (RC + delta_time)) * |
|
(derivative - _last_derivative)); |
|
|
|
// update state |
|
_last_error = error; |
|
_last_derivative = derivative; |
|
|
|
// add in derivative component |
|
_pid_info.D = _kd * derivative; |
|
output += _pid_info.D; |
|
} |
|
|
|
// scale the P and D components |
|
output *= scaler; |
|
_pid_info.D *= scaler; |
|
_pid_info.P *= scaler; |
|
|
|
// Compute integral component if time has elapsed |
|
if ((fabsf(_ki) > 0) && (dt > 0)) { |
|
_integrator += (error * _ki) * scaler * delta_time; |
|
if (_integrator < -_imax) { |
|
_integrator = -_imax; |
|
} else if (_integrator > _imax) { |
|
_integrator = _imax; |
|
} |
|
_pid_info.I = _integrator; |
|
output += _integrator; |
|
} |
|
|
|
_pid_info.target = output; |
|
return output; |
|
} |
|
|
|
void |
|
PID::reset_I() |
|
{ |
|
_integrator = 0; |
|
// we use NAN (Not A Number) to indicate that the last |
|
// derivative value is not valid |
|
_last_derivative = NAN; |
|
_pid_info.I = 0; |
|
} |
|
|
|
void PID::reset() { |
|
memset(&_pid_info, 0, sizeof(_pid_info)); |
|
reset_I(); |
|
} |
|
|
|
void |
|
PID::load_gains() |
|
{ |
|
_kp.load(); |
|
_ki.load(); |
|
_kd.load(); |
|
_imax.load(); |
|
} |
|
|
|
void |
|
PID::save_gains() |
|
{ |
|
_kp.save(); |
|
_ki.save(); |
|
_kd.save(); |
|
_imax.save(); |
|
}
|
|
|